Heyyoung Kim , Seonggyu Bang , Ayeong Han , Heejae Kang , Islam M. Saadeldin , Ahmad Yar Qamar , Sanghoon Lee , Jongki Cho
{"title":"Ultrastructural and functional recovery of mitochondria and improved developmental competence by melatonin in oxidatively stressed porcine oocytes","authors":"Heyyoung Kim , Seonggyu Bang , Ayeong Han , Heejae Kang , Islam M. Saadeldin , Ahmad Yar Qamar , Sanghoon Lee , Jongki Cho","doi":"10.1016/j.mito.2025.102060","DOIUrl":null,"url":null,"abstract":"<div><div>Mitochondrial dysfunction induced by oxidative stress impairs oocyte maturation and subsequent embryonic development. In this study, we investigated whether melatonin, a potent antioxidant, could mitigate hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>)-induced mitochondrial damage in porcine oocytes and restore their developmental competence. Oocytes were exposed to H<sub>2</sub>O<sub>2</sub> prior to in vitro maturation (IVM), followed by treatment with varying concentrations of melatonin (0, 0.5, 1, and 5 μM). Melatonin treatment significantly improved maturation and blastocyst formation rates, with 1 μM showing the most pronounced effect. This recovery was accompanied by enhanced mitochondrial bioenergetics, which was likely driven by reduced ROS accumulation and increased intracellular glutathione. Melatonin also reversed the ultrastructural abnormalities of mitochondria, reduced apoptotic signals, and normalized mitophagy markers. These findings suggest that melatonin confers mitochondrial protection and promotes oocyte competence under oxidative stress, supporting its therapeutic potential in reproductive biotechnology.</div></div>","PeriodicalId":18606,"journal":{"name":"Mitochondrion","volume":"84 ","pages":"Article 102060"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrion","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567724925000571","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial dysfunction induced by oxidative stress impairs oocyte maturation and subsequent embryonic development. In this study, we investigated whether melatonin, a potent antioxidant, could mitigate hydrogen peroxide (H2O2)-induced mitochondrial damage in porcine oocytes and restore their developmental competence. Oocytes were exposed to H2O2 prior to in vitro maturation (IVM), followed by treatment with varying concentrations of melatonin (0, 0.5, 1, and 5 μM). Melatonin treatment significantly improved maturation and blastocyst formation rates, with 1 μM showing the most pronounced effect. This recovery was accompanied by enhanced mitochondrial bioenergetics, which was likely driven by reduced ROS accumulation and increased intracellular glutathione. Melatonin also reversed the ultrastructural abnormalities of mitochondria, reduced apoptotic signals, and normalized mitophagy markers. These findings suggest that melatonin confers mitochondrial protection and promotes oocyte competence under oxidative stress, supporting its therapeutic potential in reproductive biotechnology.
期刊介绍:
Mitochondrion is a definitive, high profile, peer-reviewed international research journal. The scope of Mitochondrion is broad, reporting on basic science of mitochondria from all organisms and from basic research to pathology and clinical aspects of mitochondrial diseases. The journal welcomes original contributions from investigators working in diverse sub-disciplines such as evolution, biophysics, biochemistry, molecular and cell biology, genetics, pharmacology, toxicology, forensic science, programmed cell death, aging, cancer and clinical features of mitochondrial diseases.