Enhanced Hydrogen Adsorption on In2O3(111) via Oxygen Vacancy Engineering

IF 6.2
Yishui Ding, Jie Chen, Haihong Zheng, Yalong Jiang, Linbo Li, Xiangrui Geng, Xu Lian, Lu Yang, Ziqi Zhang, Kelvin Hongliang Zhang, Hexing Li, JianQiang Zhong* and Wei Chen*, 
{"title":"Enhanced Hydrogen Adsorption on In2O3(111) via Oxygen Vacancy Engineering","authors":"Yishui Ding,&nbsp;Jie Chen,&nbsp;Haihong Zheng,&nbsp;Yalong Jiang,&nbsp;Linbo Li,&nbsp;Xiangrui Geng,&nbsp;Xu Lian,&nbsp;Lu Yang,&nbsp;Ziqi Zhang,&nbsp;Kelvin Hongliang Zhang,&nbsp;Hexing Li,&nbsp;JianQiang Zhong* and Wei Chen*,&nbsp;","doi":"10.1021/prechem.5c0000510.1021/prechem.5c00005","DOIUrl":null,"url":null,"abstract":"<p >The emergence of In<sub>2</sub>O<sub>3</sub> as an efficient catalyst for selective hydrogenation has attracted significant attention. However, the mechanism of hydrogen (H<sub>2</sub>) dissociation on In<sub>2</sub>O<sub>3</sub> remains experimentally elusive. In this work, we show that the interaction of H<sub>2</sub> with In<sub>2</sub>O<sub>3</sub> is strongly influenced by the presence of oxygen vacancies. Using a combination of <i>in situ</i> near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS), ultraviolet photoelectron spectroscopy (UPS), infrared reflection absorption spectroscopy (IRRAS), and density functional theory (DFT) calculations, we systematically investigated the interaction of H<sub>2</sub> on well-defined oxidized In<sub>2</sub>O<sub>3</sub>(111) and partially reduced In<sub>2</sub>O<sub>3–<i>x</i></sub>(111) surfaces. Our results reveal that H<sub>2</sub> dissociates and adsorbs as hydroxyl groups (OH), which are exclusively stabilized on the In<sub>2</sub>O<sub>3–<i>x</i></sub>(111) surface. The adsorbed hydrogen species act as electron donors, contributing to interfacial electron accumulation near the surface and inducing downward band bending. DFT calculations further indicate that oxygen vacancies in In<sub>2</sub>O<sub>3–<i>x</i></sub>(111) are critical for facilitating the heterolytic dissociation of H<sub>2</sub>, leading to the stabilization of In–H and OH species. These findings provide valuable implications for the catalytic behavior of indium oxide in hydrogenation and hydrogen-involved redox reactions.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 6","pages":"337–347 337–347"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/prechem.5c00005","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/prechem.5c00005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of In2O3 as an efficient catalyst for selective hydrogenation has attracted significant attention. However, the mechanism of hydrogen (H2) dissociation on In2O3 remains experimentally elusive. In this work, we show that the interaction of H2 with In2O3 is strongly influenced by the presence of oxygen vacancies. Using a combination of in situ near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS), ultraviolet photoelectron spectroscopy (UPS), infrared reflection absorption spectroscopy (IRRAS), and density functional theory (DFT) calculations, we systematically investigated the interaction of H2 on well-defined oxidized In2O3(111) and partially reduced In2O3–x(111) surfaces. Our results reveal that H2 dissociates and adsorbs as hydroxyl groups (OH), which are exclusively stabilized on the In2O3–x(111) surface. The adsorbed hydrogen species act as electron donors, contributing to interfacial electron accumulation near the surface and inducing downward band bending. DFT calculations further indicate that oxygen vacancies in In2O3–x(111) are critical for facilitating the heterolytic dissociation of H2, leading to the stabilization of In–H and OH species. These findings provide valuable implications for the catalytic behavior of indium oxide in hydrogenation and hydrogen-involved redox reactions.

氧空位工程增强In2O3(111)对氢的吸附
In2O3作为一种高效的选择性加氢催化剂的出现引起了人们的广泛关注。然而,氢(H2)在In2O3上解离的机理在实验上仍然是难以捉摸的。在这项工作中,我们表明H2与In2O3的相互作用受到氧空位存在的强烈影响。利用现场近大气压x射线光电子能谱(NAP-XPS)、紫外光电子能谱(UPS)、红外反射吸收能谱(IRRAS)和密度泛函理论(DFT)计算,我们系统地研究了H2在定义明确的氧化In2O3(111)和部分还原In2O3 - x(111)表面上的相互作用。我们的研究结果表明,H2解离并吸附为羟基(OH),羟基只稳定在In2O3-x(111)表面。吸附的氢作为电子供体,有助于表面附近的界面电子积累并诱导向下的能带弯曲。DFT计算进一步表明,In2O3-x(111)中的氧空位对于促进H2的异解离解至关重要,从而导致in - h和OH的稳定。这些发现为氧化铟在加氢和含氢氧化还原反应中的催化行为提供了有价值的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Precision Chemistry
Precision Chemistry 精密化学技术-
CiteScore
0.80
自引率
0.00%
发文量
0
期刊介绍: Chemical research focused on precision enables more controllable predictable and accurate outcomes which in turn drive innovation in measurement science sustainable materials information materials personalized medicines energy environmental science and countless other fields requiring chemical insights.Precision Chemistry provides a unique and highly focused publishing venue for fundamental applied and interdisciplinary research aiming to achieve precision calculation design synthesis manipulation measurement and manufacturing. It is committed to bringing together researchers from across the chemical sciences and the related scientific areas to showcase original research and critical reviews of exceptional quality significance and interest to the broad chemistry and scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信