{"title":"High-Fidelity, One-Pot Nucleic Acid Amplification via OMEGA IsrB Nickase Cycling for Clinical Pathogen Detection","authors":"Yusheng Liao, Yifan Sun, Hui Yu, Jiali Ren* and Fengjiao He*, ","doi":"10.1021/jacsau.5c0037910.1021/jacsau.5c00379","DOIUrl":null,"url":null,"abstract":"<p >Nucleic acid amplification technologies are pivotal in diagnostics but face challenges from nonspecific amplification and inefficient proofreading. CRISPR-based methods are hindered by persistent protein occupation postcleavage, limiting scalability. Here, we present an OMEGA IsrB Nickase Cyclic Exponential (ONCE) amplification, a novel isothermal strategy leveraging the RNA-guided nickase IsrB for site-specific proofreading. ONCE uniquely integrates DNA polymerase to cyclically displace IsrB from target sites, enabling high-fidelity, one-pot exponential amplification. Systematic validation demonstrates attomolar sensitivity and single-nucleotide mismatch discrimination, outperforming those of CRISPR-Cas9 and conventional nickases. Applied to bacterial detection, ONCE quantifies <i>Pseudomonas aeruginosa</i> at 4.16 CFU/mL within 70 min, achieving 94.12% sensitivity and 100% specificity in clinical urine samples with no false-positives compared to qPCR. This work establishes ONCE as a robust, scalable tool for precision diagnostics in clinical and point-of-care settings.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 6","pages":"2802–2809 2802–2809"},"PeriodicalIF":8.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.5c00379","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.5c00379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nucleic acid amplification technologies are pivotal in diagnostics but face challenges from nonspecific amplification and inefficient proofreading. CRISPR-based methods are hindered by persistent protein occupation postcleavage, limiting scalability. Here, we present an OMEGA IsrB Nickase Cyclic Exponential (ONCE) amplification, a novel isothermal strategy leveraging the RNA-guided nickase IsrB for site-specific proofreading. ONCE uniquely integrates DNA polymerase to cyclically displace IsrB from target sites, enabling high-fidelity, one-pot exponential amplification. Systematic validation demonstrates attomolar sensitivity and single-nucleotide mismatch discrimination, outperforming those of CRISPR-Cas9 and conventional nickases. Applied to bacterial detection, ONCE quantifies Pseudomonas aeruginosa at 4.16 CFU/mL within 70 min, achieving 94.12% sensitivity and 100% specificity in clinical urine samples with no false-positives compared to qPCR. This work establishes ONCE as a robust, scalable tool for precision diagnostics in clinical and point-of-care settings.