{"title":"Energy propagation in scattering convolution networks can be arbitrarily slow","authors":"Hartmut Führ, Max Getter","doi":"10.1016/j.acha.2025.101790","DOIUrl":null,"url":null,"abstract":"<div><div>We analyze energy decay for deep convolutional neural networks employed as feature extractors, including Mallat's wavelet scattering transform. For time-frequency scattering transforms based on Gabor filters, previous work has established that energy decay is exponential for arbitrary square-integrable input signals. In contrast, our main results allow proving that this is false for wavelet scattering in any dimension. Specifically, we show that the energy decay of wavelet and wavelet-like scattering transforms acting on generic square-integrable signals can be arbitrarily slow. Importantly, this slow decay behavior holds for dense subsets of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>, indicating that rapid energy decay is generally an unstable property of signals. We complement these findings with positive results that allow us to infer fast (up to exponential) energy decay for generalized Sobolev spaces tailored to the frequency localization of the underlying filter bank. Both negative and positive results highlight that energy decay in scattering networks critically depends on the interplay between the respective frequency localizations of both the signal and the filters used.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"79 ","pages":"Article 101790"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520325000442","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We analyze energy decay for deep convolutional neural networks employed as feature extractors, including Mallat's wavelet scattering transform. For time-frequency scattering transforms based on Gabor filters, previous work has established that energy decay is exponential for arbitrary square-integrable input signals. In contrast, our main results allow proving that this is false for wavelet scattering in any dimension. Specifically, we show that the energy decay of wavelet and wavelet-like scattering transforms acting on generic square-integrable signals can be arbitrarily slow. Importantly, this slow decay behavior holds for dense subsets of , indicating that rapid energy decay is generally an unstable property of signals. We complement these findings with positive results that allow us to infer fast (up to exponential) energy decay for generalized Sobolev spaces tailored to the frequency localization of the underlying filter bank. Both negative and positive results highlight that energy decay in scattering networks critically depends on the interplay between the respective frequency localizations of both the signal and the filters used.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.