Soyaab Islam, Kunwoong Park, Jing Xia, Eunju Kwon, Dong Young Kim
{"title":"Structural insights of gibberellin-mediated DELLA protein degradation","authors":"Soyaab Islam, Kunwoong Park, Jing Xia, Eunju Kwon, Dong Young Kim","doi":"10.1016/j.molp.2025.06.010","DOIUrl":null,"url":null,"abstract":"Gibberellin promotes plant growth by downregulating DELLA proteins, which act as growth repressors. In the presence of gibberellin, the gibberellin receptor GID1 binds to DELLA proteins, triggering their degradation through polyubiquitination by the SCF<ce:sup loc=\"post\">SLY1/GID2</ce:sup> ubiquitin E3 ligase. Despite extensive studies, the molecular mechanisms by which DELLA proteins assemble with SCF<ce:sup loc=\"post\">SLY1/GID2</ce:sup> to regulate plant growth remain poorly understood. Here, we present two cryo-electron microscopy structures of the <ce:italic>Arabidopsis thaliana</ce:italic> DELLA protein RGA in complex with GID1A and GID1A-SLY1-ASK2, respectively. Structural analyses revealed that RGA interacts with GID1A and SLY1 through nonoverlapping binding surfaces, stabilizing the proteins. This suggests that the SCF<ce:sup loc=\"post\">SLY1</ce:sup>-RGA-GID1A complex assembles through a stepwise stabilization process induced by gibberellin. Furthermore, structural comparison with GRAS proteins indicates that RGA does not interact with IDD family transcription factors when bound to SLY1, suggesting that DELLA protein binding to GID1/SLY1 and to transcription factors is mutually exclusive. These findings provide insights into the gibberellin-mediated regulation of transcription factor activity by DELLA proteins.","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":"25 1","pages":""},"PeriodicalIF":24.1000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2025.06.010","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gibberellin promotes plant growth by downregulating DELLA proteins, which act as growth repressors. In the presence of gibberellin, the gibberellin receptor GID1 binds to DELLA proteins, triggering their degradation through polyubiquitination by the SCFSLY1/GID2 ubiquitin E3 ligase. Despite extensive studies, the molecular mechanisms by which DELLA proteins assemble with SCFSLY1/GID2 to regulate plant growth remain poorly understood. Here, we present two cryo-electron microscopy structures of the Arabidopsis thaliana DELLA protein RGA in complex with GID1A and GID1A-SLY1-ASK2, respectively. Structural analyses revealed that RGA interacts with GID1A and SLY1 through nonoverlapping binding surfaces, stabilizing the proteins. This suggests that the SCFSLY1-RGA-GID1A complex assembles through a stepwise stabilization process induced by gibberellin. Furthermore, structural comparison with GRAS proteins indicates that RGA does not interact with IDD family transcription factors when bound to SLY1, suggesting that DELLA protein binding to GID1/SLY1 and to transcription factors is mutually exclusive. These findings provide insights into the gibberellin-mediated regulation of transcription factor activity by DELLA proteins.
期刊介绍:
Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution.
Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.