A two-grid characteristic finite element method for incompressible flow

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Yu Jiang , Junchang Qin , Xiaoming He
{"title":"A two-grid characteristic finite element method for incompressible flow","authors":"Yu Jiang ,&nbsp;Junchang Qin ,&nbsp;Xiaoming He","doi":"10.1016/j.aml.2025.109663","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes and briefly analyzes a two-grid characteristic finite element method based on a residual technique, with the low order pair of mixed finite element such as <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>, for the incompressible time-dependent Navier–Stokes equations. A characteristic finite element calculation of nonlinear Navier–Stokes problem is first presented on a coarse grid, followed by the residual correction on a fine grid utilizing the difference between the coarse and fine grids. The characteristic method is transported by divergence-free velocity field, free of the Newton iterations, unconditionally stable, and free of stabilization for large Reynolds numbers of incompressible flow. The numerical results show high accuracy and efficiency.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"171 ","pages":"Article 109663"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002137","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes and briefly analyzes a two-grid characteristic finite element method based on a residual technique, with the low order pair of mixed finite element such as P1P1, for the incompressible time-dependent Navier–Stokes equations. A characteristic finite element calculation of nonlinear Navier–Stokes problem is first presented on a coarse grid, followed by the residual correction on a fine grid utilizing the difference between the coarse and fine grids. The characteristic method is transported by divergence-free velocity field, free of the Newton iterations, unconditionally stable, and free of stabilization for large Reynolds numbers of incompressible flow. The numerical results show high accuracy and efficiency.
不可压缩流动的双网格特征有限元法
本文针对不可压缩时相关Navier-Stokes方程,提出并简要分析了基于残差技术的双网格特征有限元方法,该方法采用低阶混合有限元对,如P1−P1。首先在粗网格上给出非线性Navier-Stokes问题的特征有限元计算,然后利用粗网格和细网格的差值在细网格上进行残差校正。该特征方法采用无散度速度场传输,不需要牛顿迭代,无条件稳定,对于大雷诺数不可压缩流不稳定。数值结果表明,该方法具有较高的精度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信