A scalable multi-robot goal assignment algorithm for minimizing mission time followed by total movement cost

IF 5.1 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Aakash, Indranil Saha
{"title":"A scalable multi-robot goal assignment algorithm for minimizing mission time followed by total movement cost","authors":"Aakash,&nbsp;Indranil Saha","doi":"10.1016/j.artint.2025.104388","DOIUrl":null,"url":null,"abstract":"<div><div>We study a variant of the multi-robot goal assignment problem where a unique goal for each robot needs to be assigned while minimizing the largest cost of movement among the robots, called makespan, and then minimizing the total movement cost of all the robots without exceeding the optimal makespan. A significant step in solving this problem is to find the cost associated with each robot-goal pair, which requires solving several complex path planning problems, thus, limiting the scalability. We present an algorithm that solves the multi-robot goal assignment problem by computing the paths for a significantly smaller number of robot-goal pairs compared to state-of-the-art algorithms, leading to a computationally superior mechanism to solve the problem. We perform theoretical analysis to establish the correctness and optimality of the proposed algorithm, as well as its worst-case polynomial time complexity. We extensively evaluate our algorithm for hundreds of robots on randomly generated and standard workspaces. Our experimental results demonstrate that the proposed algorithm achieves a noticeable speedup over two state-of-the-art baseline algorithms.</div></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"347 ","pages":"Article 104388"},"PeriodicalIF":5.1000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370225001079","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We study a variant of the multi-robot goal assignment problem where a unique goal for each robot needs to be assigned while minimizing the largest cost of movement among the robots, called makespan, and then minimizing the total movement cost of all the robots without exceeding the optimal makespan. A significant step in solving this problem is to find the cost associated with each robot-goal pair, which requires solving several complex path planning problems, thus, limiting the scalability. We present an algorithm that solves the multi-robot goal assignment problem by computing the paths for a significantly smaller number of robot-goal pairs compared to state-of-the-art algorithms, leading to a computationally superior mechanism to solve the problem. We perform theoretical analysis to establish the correctness and optimality of the proposed algorithm, as well as its worst-case polynomial time complexity. We extensively evaluate our algorithm for hundreds of robots on randomly generated and standard workspaces. Our experimental results demonstrate that the proposed algorithm achieves a noticeable speedup over two state-of-the-art baseline algorithms.
最小化任务时间和总运动成本的可扩展多机器人目标分配算法
本文研究了多机器人目标分配问题的一种变体,即需要为每个机器人分配一个唯一的目标,同时使机器人之间的最大运动成本最小化(称为makespan),然后在不超过最优makespan的情况下使所有机器人的总运动成本最小化。解决该问题的一个重要步骤是找到每个机器人-目标对的相关成本,这需要解决几个复杂的路径规划问题,因此限制了可扩展性。我们提出了一种算法,该算法通过计算机器人-目标对的路径来解决多机器人目标分配问题,与最先进的算法相比,它的数量要少得多,从而产生了一种计算上优越的机制来解决问题。我们进行了理论分析,以确定所提出的算法的正确性和最优性,以及它的最坏情况多项式时间复杂度。我们在随机生成和标准工作空间上对数百个机器人广泛评估我们的算法。实验结果表明,该算法比两种最先进的基线算法实现了显著的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence
Artificial Intelligence 工程技术-计算机:人工智能
CiteScore
11.20
自引率
1.40%
发文量
118
审稿时长
8 months
期刊介绍: The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信