Datago Xu, Huiyu Zhou, Tianle Jie, Zhifeng Zhou, Yi Yuan, Monèm Jemni, Wenjing Quan, Zixiang Gao, Liangliang Xiang, Fekete Gusztav, Meizi Wang, Justin Fernandez, Julien S. Baker, Yaodong Gu
{"title":"Data-Driven Deep Learning for Predicting Ligament Fatigue Failure Risk Mechanisms","authors":"Datago Xu, Huiyu Zhou, Tianle Jie, Zhifeng Zhou, Yi Yuan, Monèm Jemni, Wenjing Quan, Zixiang Gao, Liangliang Xiang, Fekete Gusztav, Meizi Wang, Justin Fernandez, Julien S. Baker, Yaodong Gu","doi":"10.1016/j.ijmecsci.2025.110519","DOIUrl":null,"url":null,"abstract":"The pathogenesis of musculoskeletal disorders is closely associated with the cumulative damage and fatigue failure behavior of fibrous connective tissues under long-term repetitive loading. However, significant technological challenges remain in real-time dynamic monitoring of ligament fatigue life, particularly the lack of efficient computational mechanics modeling frameworks and precise assessment tools adaptable to real-world movement scenarios. The multimodal integrated framework for ligament fatigue life assessment was proposed in this study. First, the high-accuracy subject-specific musculoskeletal models were developed based on individualized medical imaging data. A coupled hyperelastic-viscoelastic constitutive model was incorporated to accurately characterize the nonlinear mechanical behavior of ligamentous tissues and their fatigue damage evolution under cyclic loading. Furthermore, by integrating continuum damage mechanics theory, a time-dependent cumulative damage evolution equation was established to systematically quantify the coupling relationship between fatigue failure probability and dynamic mechanical loading. In the data-driven prediction module, an innovative deep-learning model that integrates kinematic-dynamic coupling was developed. By integrating wearable inertial measurement units, the model enables real-time inversion of ligament loading force-fatigue failure states and prediction of fatigue life. This approach effectively overcomes the limitations of traditional mechanical modeling in long-term, multi-scenario dynamic monitoring, achieving high-precision and minimally invasive fatigue life evaluation of ligaments. The proposed computational framework breaks the static-loading constraints of conventional fatigue testing, achieving the dynamic biomechanical analysis and fatigue life prediction under real movement conditions. This work not only provides novel theoretical insights into the mechanisms and modeling of ligament fatigue damage, but also provides a generalizable tool for biomechanical injury prevention, rehabilitation planning, and soft tissue fatigue analysis in the musculoskeletal system.","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"6 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ijmecsci.2025.110519","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The pathogenesis of musculoskeletal disorders is closely associated with the cumulative damage and fatigue failure behavior of fibrous connective tissues under long-term repetitive loading. However, significant technological challenges remain in real-time dynamic monitoring of ligament fatigue life, particularly the lack of efficient computational mechanics modeling frameworks and precise assessment tools adaptable to real-world movement scenarios. The multimodal integrated framework for ligament fatigue life assessment was proposed in this study. First, the high-accuracy subject-specific musculoskeletal models were developed based on individualized medical imaging data. A coupled hyperelastic-viscoelastic constitutive model was incorporated to accurately characterize the nonlinear mechanical behavior of ligamentous tissues and their fatigue damage evolution under cyclic loading. Furthermore, by integrating continuum damage mechanics theory, a time-dependent cumulative damage evolution equation was established to systematically quantify the coupling relationship between fatigue failure probability and dynamic mechanical loading. In the data-driven prediction module, an innovative deep-learning model that integrates kinematic-dynamic coupling was developed. By integrating wearable inertial measurement units, the model enables real-time inversion of ligament loading force-fatigue failure states and prediction of fatigue life. This approach effectively overcomes the limitations of traditional mechanical modeling in long-term, multi-scenario dynamic monitoring, achieving high-precision and minimally invasive fatigue life evaluation of ligaments. The proposed computational framework breaks the static-loading constraints of conventional fatigue testing, achieving the dynamic biomechanical analysis and fatigue life prediction under real movement conditions. This work not only provides novel theoretical insights into the mechanisms and modeling of ligament fatigue damage, but also provides a generalizable tool for biomechanical injury prevention, rehabilitation planning, and soft tissue fatigue analysis in the musculoskeletal system.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.