Immunometabolism in heart failure

IF 41.7 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Ioanna Andreadou, Alessandra Ghigo, Panagiota-Efstathia Nikolaou, Filip K. Swirski, James T. Thackeray, Gerd Heusch, Gemma Vilahur
{"title":"Immunometabolism in heart failure","authors":"Ioanna Andreadou, Alessandra Ghigo, Panagiota-Efstathia Nikolaou, Filip K. Swirski, James T. Thackeray, Gerd Heusch, Gemma Vilahur","doi":"10.1038/s41569-025-01165-8","DOIUrl":null,"url":null,"abstract":"<p>The interaction between inflammation and metabolism (immunometabolism) is a crucial factor in the pathophysiology of heart failure, whether the cardiac failure originates from ischaemic injury or systemic metabolic disorders, and whether it is associated with reduced or preserved ejection fraction. Ischaemia, metabolic stress and comorbidity-driven systemic inflammation attract innate and adaptive immune cells to the myocardium and induce their polarization towards pro-inflammatory or anti-inflammatory phenotypes through cell-intrinsic metabolic shifts involving oxidative phosphorylation and anaerobic glycolysis. These infiltrating immune cells modulate cardiac and systemic metabolism. The bidirectional metabolic crosstalk between immune cells and parenchymal and stromal cardiac cells contributes to adverse cardiac remodelling. In turn, ischaemic injury and deregulated metabolism stimulate bone marrow and extramedullary myelopoiesis, which increases immune cell recruitment and perpetuates a non-resolving chronic inflammatory state. Pharmacological interventions targeting metabolism have shown promise for improving outcomes in patients with heart failure, but immunomodulatory approaches face multiple challenges. Understanding the complex metabolic pathways and cell–cell interactions that regulate immunometabolism in heart failure is essential to identify new therapies that shift the balance from maladaptive to cardioprotective immune responses. In this Review, we provide a comprehensive overview of the intricate cellular and molecular mechanisms that govern immunometabolism in heart failure and discuss potential approaches to non-invasively monitor and treat patients with heart failure.</p>","PeriodicalId":18976,"journal":{"name":"Nature Reviews Cardiology","volume":"17 1","pages":""},"PeriodicalIF":41.7000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41569-025-01165-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The interaction between inflammation and metabolism (immunometabolism) is a crucial factor in the pathophysiology of heart failure, whether the cardiac failure originates from ischaemic injury or systemic metabolic disorders, and whether it is associated with reduced or preserved ejection fraction. Ischaemia, metabolic stress and comorbidity-driven systemic inflammation attract innate and adaptive immune cells to the myocardium and induce their polarization towards pro-inflammatory or anti-inflammatory phenotypes through cell-intrinsic metabolic shifts involving oxidative phosphorylation and anaerobic glycolysis. These infiltrating immune cells modulate cardiac and systemic metabolism. The bidirectional metabolic crosstalk between immune cells and parenchymal and stromal cardiac cells contributes to adverse cardiac remodelling. In turn, ischaemic injury and deregulated metabolism stimulate bone marrow and extramedullary myelopoiesis, which increases immune cell recruitment and perpetuates a non-resolving chronic inflammatory state. Pharmacological interventions targeting metabolism have shown promise for improving outcomes in patients with heart failure, but immunomodulatory approaches face multiple challenges. Understanding the complex metabolic pathways and cell–cell interactions that regulate immunometabolism in heart failure is essential to identify new therapies that shift the balance from maladaptive to cardioprotective immune responses. In this Review, we provide a comprehensive overview of the intricate cellular and molecular mechanisms that govern immunometabolism in heart failure and discuss potential approaches to non-invasively monitor and treat patients with heart failure.

Abstract Image

心力衰竭的免疫代谢
炎症与代谢(免疫代谢)之间的相互作用是心衰病理生理的关键因素,无论心衰源于缺血性损伤还是全身性代谢紊乱,以及是否与射血分数降低或保留有关。缺血、代谢应激和共病驱动的全身性炎症将先天和适应性免疫细胞吸引到心肌,并通过细胞内在代谢变化(包括氧化磷酸化和厌氧糖酵解)诱导其向促炎或抗炎表型分化。这些浸润性免疫细胞调节心脏和全身代谢。免疫细胞与心肌实质细胞和间质细胞之间的双向代谢串扰有助于心脏不良重构。反过来,缺血性损伤和代谢失调刺激骨髓和髓外骨髓生成,从而增加免疫细胞募集并使慢性炎症状态持续存在。针对代谢的药物干预已显示出改善心力衰竭患者预后的希望,但免疫调节方法面临多重挑战。了解心脏衰竭中调节免疫代谢的复杂代谢途径和细胞-细胞相互作用,对于确定将平衡从适应不良转变为心脏保护免疫反应的新疗法至关重要。在这篇综述中,我们全面概述了控制心力衰竭免疫代谢的复杂细胞和分子机制,并讨论了无创监测和治疗心力衰竭患者的潜在方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Reviews Cardiology
Nature Reviews Cardiology 医学-心血管系统
CiteScore
53.10
自引率
0.60%
发文量
143
审稿时长
6-12 weeks
期刊介绍: Nature Reviews Cardiology aims to be the go-to source for reviews and commentaries in the scientific and clinical communities it serves. Focused on providing authoritative and accessible articles enriched with clear figures and tables, the journal strives to offer unparalleled service to authors, referees, and readers, maximizing the usefulness and impact of each publication. It covers a broad range of content types, including Research Highlights, Comments, News & Views, Reviews, Consensus Statements, and Perspectives, catering to practising cardiologists and cardiovascular research scientists. Authored by renowned clinicians, academics, and researchers, the content targets readers in the biological and medical sciences, ensuring accessibility across various disciplines. In-depth Reviews offer up-to-date information, while Consensus Statements provide evidence-based recommendations. Perspectives and News & Views present topical discussions and opinions, and the Research Highlights section filters primary research from cardiovascular and general medical journals. As part of the Nature Reviews portfolio, Nature Reviews Cardiology maintains high standards and a wide reach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信