Dunja Aksentijevic, Simon Sedej, Jeremy Fauconnier, Melanie Paillard, Mahmoud Abdellatif, Katrin Streckfuss-Bömeke, Renée Ventura-Clapier, Jolanda van der Velden, Rudolf A. de Boer, Edoardo Bertero, Jan Dudek, Vasco Sequeira, Christoph Maack
{"title":"Mechano-energetic uncoupling in heart failure","authors":"Dunja Aksentijevic, Simon Sedej, Jeremy Fauconnier, Melanie Paillard, Mahmoud Abdellatif, Katrin Streckfuss-Bömeke, Renée Ventura-Clapier, Jolanda van der Velden, Rudolf A. de Boer, Edoardo Bertero, Jan Dudek, Vasco Sequeira, Christoph Maack","doi":"10.1038/s41569-025-01167-6","DOIUrl":null,"url":null,"abstract":"<p>Heart failure (HF) is a major global and life-threatening disease. Despite advances in therapies, the prevalence of HF is increasing owing to an ageing population and the pervasive pandemic of obesity and metabolic disorders, which have transformed the pathophysiology of HF. Changes in cardiac energy metabolism and the related energy deficit crucially contribute to the severity and type of HF. Furthermore, perturbations in excitation–contraction coupling, mitochondrial function and oxidative stress are characteristic features of HF. In this Review, we focus on the close interaction between cardiac mechanics and mitochondrial energetics, and decipher how this mechano-energetic coupling is disturbed in various acquired and hereditary forms of HF. In HF with reduced ejection fraction, defects in excitation–contraction coupling are key drivers of mechano-energetic uncoupling, whereas in HF with preserved ejection fraction, increased preload and afterload imposed by obesity, hypertension and age-dependent vascular stiffness increase mechanical workload, which is insufficiently matched by mitochondrial tricarboxylic acid cycle activity and ATP supply. In both scenarios, oxidative stress results from depletion of the antioxidative capacity and contributes to maladaptive cardiac remodelling and dysfunction. Several established and emerging treatments for HF target this mechano-energetic uncoupling, and a greater understanding of the underlying mechanisms will open new therapeutic opportunities to alleviate the burden of HF.</p>","PeriodicalId":18976,"journal":{"name":"Nature Reviews Cardiology","volume":"15 1","pages":""},"PeriodicalIF":41.7000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41569-025-01167-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Heart failure (HF) is a major global and life-threatening disease. Despite advances in therapies, the prevalence of HF is increasing owing to an ageing population and the pervasive pandemic of obesity and metabolic disorders, which have transformed the pathophysiology of HF. Changes in cardiac energy metabolism and the related energy deficit crucially contribute to the severity and type of HF. Furthermore, perturbations in excitation–contraction coupling, mitochondrial function and oxidative stress are characteristic features of HF. In this Review, we focus on the close interaction between cardiac mechanics and mitochondrial energetics, and decipher how this mechano-energetic coupling is disturbed in various acquired and hereditary forms of HF. In HF with reduced ejection fraction, defects in excitation–contraction coupling are key drivers of mechano-energetic uncoupling, whereas in HF with preserved ejection fraction, increased preload and afterload imposed by obesity, hypertension and age-dependent vascular stiffness increase mechanical workload, which is insufficiently matched by mitochondrial tricarboxylic acid cycle activity and ATP supply. In both scenarios, oxidative stress results from depletion of the antioxidative capacity and contributes to maladaptive cardiac remodelling and dysfunction. Several established and emerging treatments for HF target this mechano-energetic uncoupling, and a greater understanding of the underlying mechanisms will open new therapeutic opportunities to alleviate the burden of HF.
期刊介绍:
Nature Reviews Cardiology aims to be the go-to source for reviews and commentaries in the scientific and clinical communities it serves. Focused on providing authoritative and accessible articles enriched with clear figures and tables, the journal strives to offer unparalleled service to authors, referees, and readers, maximizing the usefulness and impact of each publication. It covers a broad range of content types, including Research Highlights, Comments, News & Views, Reviews, Consensus Statements, and Perspectives, catering to practising cardiologists and cardiovascular research scientists. Authored by renowned clinicians, academics, and researchers, the content targets readers in the biological and medical sciences, ensuring accessibility across various disciplines. In-depth Reviews offer up-to-date information, while Consensus Statements provide evidence-based recommendations. Perspectives and News & Views present topical discussions and opinions, and the Research Highlights section filters primary research from cardiovascular and general medical journals. As part of the Nature Reviews portfolio, Nature Reviews Cardiology maintains high standards and a wide reach.