Irene Olivan-Muro,Jorge Guío,Germán Alonso-Tolo,Emma Sevilla,María F Fillat
{"title":"Towards the control of biofilm formation in Anabaena (Nostoc) sp. PCC7120: novel insights into the genes involved and their regulation.","authors":"Irene Olivan-Muro,Jorge Guío,Germán Alonso-Tolo,Emma Sevilla,María F Fillat","doi":"10.1111/nph.70317","DOIUrl":null,"url":null,"abstract":"Cyanobacteria are major components of biofilms in light-exposed environments, contributing to nutrient cycling, nitrogen fixation and global biogeochemical processes. Although nitrogen-fixing cyanobacteria have been successfully used in biofertilization, the regulatory mechanisms underlying biofilm formation remain poorly understood. In this work, we have identified 183 novel genes in Anabaena sp. PCC7120 potentially associated with exopolysaccharide (EPS) biosynthesis and biofilm formation, unveiling conserved and novel regulatory connections shared with phylogenetically distant bacteria. Anabaena possesses homologues of two-component systems such as XssRS and ColRS from Xanthomonas spp., and AnCrpAB from Methylobacillus, suggesting that these homologues play essential or advantageous roles in biofilm formation across diverse bacterial lineages. Additionally, Anabaena features homologues of several proteins exhibiting the GG-secretion motif typical of small proteins required for biofilm formation in unicellular cyanobacteria. A wide array of biofilm-related genes in Anabaena, including major gene clusters participating in the synthesis and translocation of EPS and key regulatory proteins involved in the control of biofilms in other bacteria are modulated by ferric uptake regulator proteins. These findings link the control of biofilm formation in Anabaena to environmental cues such as metal availability, desiccation and nitrogen levels, providing new insights to improve the use of nitrogen-fixing cyanobacterial biofilms in sustainable agriculture and environmental management.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"48 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.70317","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cyanobacteria are major components of biofilms in light-exposed environments, contributing to nutrient cycling, nitrogen fixation and global biogeochemical processes. Although nitrogen-fixing cyanobacteria have been successfully used in biofertilization, the regulatory mechanisms underlying biofilm formation remain poorly understood. In this work, we have identified 183 novel genes in Anabaena sp. PCC7120 potentially associated with exopolysaccharide (EPS) biosynthesis and biofilm formation, unveiling conserved and novel regulatory connections shared with phylogenetically distant bacteria. Anabaena possesses homologues of two-component systems such as XssRS and ColRS from Xanthomonas spp., and AnCrpAB from Methylobacillus, suggesting that these homologues play essential or advantageous roles in biofilm formation across diverse bacterial lineages. Additionally, Anabaena features homologues of several proteins exhibiting the GG-secretion motif typical of small proteins required for biofilm formation in unicellular cyanobacteria. A wide array of biofilm-related genes in Anabaena, including major gene clusters participating in the synthesis and translocation of EPS and key regulatory proteins involved in the control of biofilms in other bacteria are modulated by ferric uptake regulator proteins. These findings link the control of biofilm formation in Anabaena to environmental cues such as metal availability, desiccation and nitrogen levels, providing new insights to improve the use of nitrogen-fixing cyanobacterial biofilms in sustainable agriculture and environmental management.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.