Interfacial Electrochemical Self-Assembly Enables Mechanically Robust Infrared Stealth Coatings on Complex-Shaped Metallic Substrates.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qiang Wang,Chenghan Chang,Yujuan Li,Dongqing Zuo,Xuran Xu,Jingyi Zhang,Tiancai Zhang,Zilong Cao,Yongqiang Jia,Jianhua Xu,Jiajun Fu
{"title":"Interfacial Electrochemical Self-Assembly Enables Mechanically Robust Infrared Stealth Coatings on Complex-Shaped Metallic Substrates.","authors":"Qiang Wang,Chenghan Chang,Yujuan Li,Dongqing Zuo,Xuran Xu,Jingyi Zhang,Tiancai Zhang,Zilong Cao,Yongqiang Jia,Jianhua Xu,Jiajun Fu","doi":"10.1021/acsami.5c07687","DOIUrl":null,"url":null,"abstract":"Transition metal carbides/carbonitrides (MXene) have emerged as highly promising infrared stealth coating materials due to their exceptional low infrared emissivity and high visible light absorption. Conventional coating techniques─such as blade coating, spraying, and spin-coating, the primary methods for existing MXene coatings─require specific substrate properties and face significant challenges in conforming to geometrically complex surfaces. To address these limitations, we developed an electrochemical ion-diffusion-induced gelation approach for fabricating MXene-based composite coatings (Fe2+ M/G). This method enables uniform deposition on substrates of arbitrary geometry while achieving remarkable mechanical strength (198.31 MPa) and infrared stealth capability (infrared emissivity: 0.19). Furthermore, the coating exhibits exceptional electrical conductivity (3571.4 S cm-1), enabling dual functionality: (1) an average electromagnetic shielding effectiveness of 49.35 dB in the X-band and (2) rapid Joule heating (reaching 84 °C at 1.5 V in 120 s), suitable for low-temperature deicing applications. Beyond its core infrared stealth performance, this multifunctional coating system integrates superior physical properties, offering both fundamental insights and practical solutions for developing advanced stealth materials with extended operational capabilities.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"244 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c07687","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal carbides/carbonitrides (MXene) have emerged as highly promising infrared stealth coating materials due to their exceptional low infrared emissivity and high visible light absorption. Conventional coating techniques─such as blade coating, spraying, and spin-coating, the primary methods for existing MXene coatings─require specific substrate properties and face significant challenges in conforming to geometrically complex surfaces. To address these limitations, we developed an electrochemical ion-diffusion-induced gelation approach for fabricating MXene-based composite coatings (Fe2+ M/G). This method enables uniform deposition on substrates of arbitrary geometry while achieving remarkable mechanical strength (198.31 MPa) and infrared stealth capability (infrared emissivity: 0.19). Furthermore, the coating exhibits exceptional electrical conductivity (3571.4 S cm-1), enabling dual functionality: (1) an average electromagnetic shielding effectiveness of 49.35 dB in the X-band and (2) rapid Joule heating (reaching 84 °C at 1.5 V in 120 s), suitable for low-temperature deicing applications. Beyond its core infrared stealth performance, this multifunctional coating system integrates superior physical properties, offering both fundamental insights and practical solutions for developing advanced stealth materials with extended operational capabilities.
界面电化学自组装实现了复杂形状金属基板上机械坚固的红外隐身涂层。
过渡金属碳化物/碳氮化物(MXene)由于其低红外发射率和高可见光吸收率而成为一种非常有前途的红外隐身涂层材料。传统的涂层技术,如刀片涂层、喷涂和旋转涂层,是现有MXene涂层的主要方法,需要特定的基材性能,并且在符合几何复杂表面方面面临重大挑战。为了解决这些限制,我们开发了一种电化学离子扩散诱导凝胶化方法来制造mxene基复合涂层(Fe2+ M/G)。该方法能够在任意几何形状的衬底上均匀沉积,同时获得显著的机械强度(198.31 MPa)和红外隐身能力(红外发射率:0.19)。此外,该涂层具有优异的导电性(3571.4 S cm-1),具有双重功能:(1)x波段平均电磁屏蔽效率为49.35 dB;(2)快速焦耳加热(在1.5 V下120 S内达到84°C),适用于低温除冰应用。除了其核心的红外隐身性能外,这种多功能涂层系统集成了卓越的物理性能,为开发具有扩展操作能力的先进隐身材料提供了基本见解和实用解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信