Jeffrey J Widrick, Matthias R Lambert, Felipe de Souza Leite, Youngsook Lucy Jung, Junseok Park, James R Conner, Eunjung Alice Lee, Alan H Beggs, Louis M Kunkel
{"title":"Identifying kinematic biomarkers of the dystrophic phenotype in a zebrafish model of Duchenne muscular dystrophy.","authors":"Jeffrey J Widrick, Matthias R Lambert, Felipe de Souza Leite, Youngsook Lucy Jung, Junseok Park, James R Conner, Eunjung Alice Lee, Alan H Beggs, Louis M Kunkel","doi":"10.1186/s13395-025-00382-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dystrophin-deficient zebrafish larvae are a small, genetically tractable vertebrate model of Duchenne muscular dystrophy that is well suited for early-stage therapeutic development. However, current approaches for evaluating their mobility, a physiologically relevant therapeutic outcome, yield data of low resolution and high variability that provides minimal insight into potential mechanisms responsible for their abnormal locomotion.</p><p><strong>Methods: </strong>To address these issues, we used high speed videography and deep learning-based markerless motion capture to quantify escape response (ER) swimming kinematics of two dystrophic zebrafish strains (sapje and sapje-like). Each ER was partitioned into an initiating C-start, a subsequent power stroke, and a final burst of undulatory swimming activity.</p><p><strong>Results: </strong>Markerless motion capture provided repeatable, high precision estimates of swimming kinematics. Random forest and support vector machine prediction models identified overall ER distance and peak speed, the instantaneous speed conferred by the power stroke, and the average speed and distance covered during burst swimming as the most predictive biomarkers for differentiating dystrophic from wild-type larvae. For each of these predictors, mutant and wild-type larvae differed markedly with effect sizes ranging from 2.4 to 3.7 standard deviations. To identify mechanisms underlying these performance deficits, we evaluated the amplitude and frequency of propulsive tail movements. There was little evidence that tail stroke amplitude was affected by the absence of dystrophin. Instead, temporal aspects of tail kinematics, including tail maximal angular velocity during the C-start and power stroke and tail stroke frequency during burst swimming, were slowed in mutants. In fact, tail kinematics were as effective as direct, non-survival in vitro assessments of tail muscle contractility in differentiating mutant from wild-type larvae.</p><p><strong>Conclusions: </strong>ER kinematics can be used as precise and physiologically relevant biomarkers of the dystrophic phenotype, may serve as non-lethal proxies for skeletal muscle dysfunction, and reveal new insights into why mobility is impaired in the absence of dystrophin. The approach outlined here opens new possibilities for the design and interpretation of studies using zebrafish to model movement disorders.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"15 1","pages":"17"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12180146/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Skeletal Muscle","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13395-025-00382-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Dystrophin-deficient zebrafish larvae are a small, genetically tractable vertebrate model of Duchenne muscular dystrophy that is well suited for early-stage therapeutic development. However, current approaches for evaluating their mobility, a physiologically relevant therapeutic outcome, yield data of low resolution and high variability that provides minimal insight into potential mechanisms responsible for their abnormal locomotion.
Methods: To address these issues, we used high speed videography and deep learning-based markerless motion capture to quantify escape response (ER) swimming kinematics of two dystrophic zebrafish strains (sapje and sapje-like). Each ER was partitioned into an initiating C-start, a subsequent power stroke, and a final burst of undulatory swimming activity.
Results: Markerless motion capture provided repeatable, high precision estimates of swimming kinematics. Random forest and support vector machine prediction models identified overall ER distance and peak speed, the instantaneous speed conferred by the power stroke, and the average speed and distance covered during burst swimming as the most predictive biomarkers for differentiating dystrophic from wild-type larvae. For each of these predictors, mutant and wild-type larvae differed markedly with effect sizes ranging from 2.4 to 3.7 standard deviations. To identify mechanisms underlying these performance deficits, we evaluated the amplitude and frequency of propulsive tail movements. There was little evidence that tail stroke amplitude was affected by the absence of dystrophin. Instead, temporal aspects of tail kinematics, including tail maximal angular velocity during the C-start and power stroke and tail stroke frequency during burst swimming, were slowed in mutants. In fact, tail kinematics were as effective as direct, non-survival in vitro assessments of tail muscle contractility in differentiating mutant from wild-type larvae.
Conclusions: ER kinematics can be used as precise and physiologically relevant biomarkers of the dystrophic phenotype, may serve as non-lethal proxies for skeletal muscle dysfunction, and reveal new insights into why mobility is impaired in the absence of dystrophin. The approach outlined here opens new possibilities for the design and interpretation of studies using zebrafish to model movement disorders.
期刊介绍:
The only open access journal in its field, Skeletal Muscle publishes novel, cutting-edge research and technological advancements that investigate the molecular mechanisms underlying the biology of skeletal muscle. Reflecting the breadth of research in this area, the journal welcomes manuscripts about the development, metabolism, the regulation of mass and function, aging, degeneration, dystrophy and regeneration of skeletal muscle, with an emphasis on understanding adult skeletal muscle, its maintenance, and its interactions with non-muscle cell types and regulatory modulators.
Main areas of interest include:
-differentiation of skeletal muscle-
atrophy and hypertrophy of skeletal muscle-
aging of skeletal muscle-
regeneration and degeneration of skeletal muscle-
biology of satellite and satellite-like cells-
dystrophic degeneration of skeletal muscle-
energy and glucose homeostasis in skeletal muscle-
non-dystrophic genetic diseases of skeletal muscle, such as Spinal Muscular Atrophy and myopathies-
maintenance of neuromuscular junctions-
roles of ryanodine receptors and calcium signaling in skeletal muscle-
roles of nuclear receptors in skeletal muscle-
roles of GPCRs and GPCR signaling in skeletal muscle-
other relevant aspects of skeletal muscle biology.
In addition, articles on translational clinical studies that address molecular and cellular mechanisms of skeletal muscle will be published. Case reports are also encouraged for submission.
Skeletal Muscle reflects the breadth of research on skeletal muscle and bridges gaps between diverse areas of science for example cardiac cell biology and neurobiology, which share common features with respect to cell differentiation, excitatory membranes, cell-cell communication, and maintenance. Suitable articles are model and mechanism-driven, and apply statistical principles where appropriate; purely descriptive studies are of lesser interest.