Yang Liu, Rui Niu, Yinghui Wang, Hongjie Zhang, Yanli Zhao
{"title":"Preparation and biomedical applications of single-metal atom catalysts.","authors":"Yang Liu, Rui Niu, Yinghui Wang, Hongjie Zhang, Yanli Zhao","doi":"10.1038/s41596-025-01199-9","DOIUrl":null,"url":null,"abstract":"<p><p>Nanocatalysts, including nanozymes, photocatalysts and sonocatalysts, have been investigated to trigger catalytic reactions in vivo to regulate biological microenvironments and stimulate therapeutic effects. Compared with lower metal atom utilization rate and catalytic activity of conventional nanocatalysts, single-metal atom catalysts (SACs) usually possess higher catalytic activity and selectivity owing to their well-defined structures and maximized atom utilization. Their properties are, however, strongly dependent on their composition and the preparation procedure. Here we describe the design, preparation and functionalization of SACs with single-metal atoms positioned within nitrogen-doped carbon supports. The SACs are prepared by pyrolysis of zeolitic imidazolate framework-8 (ZIF-8) or polydopamine-derived materials. Their properties depend on, for example, the metal chosen and atoms available for coordination; four example procedures are described: Cu-N<sub>4</sub> from Cu-ZIF-8, Ir-N<sub>5</sub> from Ir@ZIF-8 plus melamine, Co-PN<sub>3</sub> from triphenylphosphine@Co-ZIF-8 and Cu-SN<sub>3</sub> from ZnS@Cu-polydopamine. These SACs need to be functionalized to, for example, reduce aggregation and in vivo corona formation before they can be used in biological applications. In this Protocol, functionalization with the proteins (that is, cholesterol oxidase and pyruvate oxidase) is used as an example. The Protocol provides advice regarding physicochemical and functional characterization, as well as for performing experiments in tumor-bearing mice. The functional experiments were designed with the aim of identifying nanocatalysts with peroxidase-like activity that generate reactive oxygen species within areas of the tumor microenvironment that have increased levels of hydrogen peroxide. SAC synthesis takes 3-4 days, functional modification requires one extra day and the most basic and essential in vitro and in vivo assays require 2-3 months.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-025-01199-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Nanocatalysts, including nanozymes, photocatalysts and sonocatalysts, have been investigated to trigger catalytic reactions in vivo to regulate biological microenvironments and stimulate therapeutic effects. Compared with lower metal atom utilization rate and catalytic activity of conventional nanocatalysts, single-metal atom catalysts (SACs) usually possess higher catalytic activity and selectivity owing to their well-defined structures and maximized atom utilization. Their properties are, however, strongly dependent on their composition and the preparation procedure. Here we describe the design, preparation and functionalization of SACs with single-metal atoms positioned within nitrogen-doped carbon supports. The SACs are prepared by pyrolysis of zeolitic imidazolate framework-8 (ZIF-8) or polydopamine-derived materials. Their properties depend on, for example, the metal chosen and atoms available for coordination; four example procedures are described: Cu-N4 from Cu-ZIF-8, Ir-N5 from Ir@ZIF-8 plus melamine, Co-PN3 from triphenylphosphine@Co-ZIF-8 and Cu-SN3 from ZnS@Cu-polydopamine. These SACs need to be functionalized to, for example, reduce aggregation and in vivo corona formation before they can be used in biological applications. In this Protocol, functionalization with the proteins (that is, cholesterol oxidase and pyruvate oxidase) is used as an example. The Protocol provides advice regarding physicochemical and functional characterization, as well as for performing experiments in tumor-bearing mice. The functional experiments were designed with the aim of identifying nanocatalysts with peroxidase-like activity that generate reactive oxygen species within areas of the tumor microenvironment that have increased levels of hydrogen peroxide. SAC synthesis takes 3-4 days, functional modification requires one extra day and the most basic and essential in vitro and in vivo assays require 2-3 months.
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.