Rony Abdi Syahputra , Amer Ahmed , Asriadi , Arnika Gloria Br. Sitorus , Sintia Karina Putri , Michle William Tan , Qhelen Mayline Chandra , Brathennovic , Yumiko Angiosaki , Felice Chrismary Lu , Davini Clister , Arya Tjipta Prananda , Princella Halim , Rosy Iara Maciel de Azambuja Ribeiro , Fahrul Nurkolis , Aminah Dalimunthe
{"title":"Ergothioneine as a functional nutraceutical: Mechanisms, bioavailability, and therapeutic implications","authors":"Rony Abdi Syahputra , Amer Ahmed , Asriadi , Arnika Gloria Br. Sitorus , Sintia Karina Putri , Michle William Tan , Qhelen Mayline Chandra , Brathennovic , Yumiko Angiosaki , Felice Chrismary Lu , Davini Clister , Arya Tjipta Prananda , Princella Halim , Rosy Iara Maciel de Azambuja Ribeiro , Fahrul Nurkolis , Aminah Dalimunthe","doi":"10.1016/j.jnutbio.2025.110006","DOIUrl":null,"url":null,"abstract":"<div><div>Ergothioneine (EGT), a naturally occurring sulfur-containing antioxidant, has gained significant attention owing to its potent cytoprotective, anti-inflammatory, and neuroprotective properties. As a dietary-derived compound predominantly found in mushrooms, EGT exhibits remarkable stability and bioavailability, facilitated by a specific ergothioneine transporter that is highly expressed in mammalian tissues. Its ability to scavenge reactive oxygen and nitrogen species effectively mitigates oxidative stress, which is a key factor in the pathogenesis of various chronic diseases, including cardiovascular disorders, neurodegenerative conditions, and cancer. Emerging evidence has highlighted the role of EGT in modulating key signaling pathways involved in inflammation, apoptosis, and cellular homeostasis, suggesting its potential as a therapeutic agent. Clinical and preclinical studies have indicated its involvement in metabolic regulation, endothelial protection, and attenuation of neurodegeneration, further reinforcing its significance as a functional nutraceutical agent. This review provides a comprehensive analysis of EGT, including its biosynthesis, dietary sources, absorption mechanisms, and metabolism, and elucidates its therapeutic potential and mechanistic underpinnings for disease prevention and management. By summarizing recent advances in EGT research, this review aims to guide future investigations and support its broader application in clinical and nutritional sciences.</div></div>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":"145 ","pages":"Article 110006"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095528632500169X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ergothioneine (EGT), a naturally occurring sulfur-containing antioxidant, has gained significant attention owing to its potent cytoprotective, anti-inflammatory, and neuroprotective properties. As a dietary-derived compound predominantly found in mushrooms, EGT exhibits remarkable stability and bioavailability, facilitated by a specific ergothioneine transporter that is highly expressed in mammalian tissues. Its ability to scavenge reactive oxygen and nitrogen species effectively mitigates oxidative stress, which is a key factor in the pathogenesis of various chronic diseases, including cardiovascular disorders, neurodegenerative conditions, and cancer. Emerging evidence has highlighted the role of EGT in modulating key signaling pathways involved in inflammation, apoptosis, and cellular homeostasis, suggesting its potential as a therapeutic agent. Clinical and preclinical studies have indicated its involvement in metabolic regulation, endothelial protection, and attenuation of neurodegeneration, further reinforcing its significance as a functional nutraceutical agent. This review provides a comprehensive analysis of EGT, including its biosynthesis, dietary sources, absorption mechanisms, and metabolism, and elucidates its therapeutic potential and mechanistic underpinnings for disease prevention and management. By summarizing recent advances in EGT research, this review aims to guide future investigations and support its broader application in clinical and nutritional sciences.
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.