{"title":"The Mitochondrial Foundations of Parkinson's Disease: Therapeutic Implications.","authors":"Smijin K Soman, Micah R J Woodruff, Ruben K Dagda","doi":"10.14336/AD.2025.0440","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria are dynamic organelles vital for neuronal function due to their ability to generate ATP, sequester cytosolic calcium (Ca<sup>2+</sup>), regulate lipid metabolism, and modulate apoptosis signaling. In order to maintain these essential functions in healthy neurons, mitochondria must be continuously replenished through mitochondrial turnover and biogenesis. Conversely, the dysregulation of mitochondrial homeostasis can lead to oxidative stress and contribute to the neuropathology of Parkinson's disease (PD). This review will provide an updated in-depth review of mitochondrial processes such as mitophagy, biogenesis, trafficking, oxidative phosphorylation, Ca<sup>2+</sup> sequestration, mitochondrial transfer, and their relevance to PD pathophysiology. We provide an extensive overview of the neuroprotective molecular signaling pathways regulated by PD-associated proteins that converge at the mitochondrion. Importantly, in this review we highlight aspects of mitochondrial pathology that converge across multiple models including iPSCs, patient-derived fibroblasts, cell culture models, rodent models and chemical and genetic models of PD. Finally, we provide a comprehensive update on the molecular toolbox used to interrogate these signaling pathways using in vitro and in vivo models of PD and provide insight into the downstream protein targets that can be leveraged to develop novel therapies against PD.</p>","PeriodicalId":7434,"journal":{"name":"Aging and Disease","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14336/AD.2025.0440","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondria are dynamic organelles vital for neuronal function due to their ability to generate ATP, sequester cytosolic calcium (Ca2+), regulate lipid metabolism, and modulate apoptosis signaling. In order to maintain these essential functions in healthy neurons, mitochondria must be continuously replenished through mitochondrial turnover and biogenesis. Conversely, the dysregulation of mitochondrial homeostasis can lead to oxidative stress and contribute to the neuropathology of Parkinson's disease (PD). This review will provide an updated in-depth review of mitochondrial processes such as mitophagy, biogenesis, trafficking, oxidative phosphorylation, Ca2+ sequestration, mitochondrial transfer, and their relevance to PD pathophysiology. We provide an extensive overview of the neuroprotective molecular signaling pathways regulated by PD-associated proteins that converge at the mitochondrion. Importantly, in this review we highlight aspects of mitochondrial pathology that converge across multiple models including iPSCs, patient-derived fibroblasts, cell culture models, rodent models and chemical and genetic models of PD. Finally, we provide a comprehensive update on the molecular toolbox used to interrogate these signaling pathways using in vitro and in vivo models of PD and provide insight into the downstream protein targets that can be leveraged to develop novel therapies against PD.
期刊介绍:
Aging & Disease (A&D) is an open-access online journal dedicated to publishing groundbreaking research on the biology of aging, the pathophysiology of age-related diseases, and innovative therapies for conditions affecting the elderly. The scope encompasses various diseases such as Stroke, Alzheimer's disease, Parkinson’s disease, Epilepsy, Dementia, Depression, Cardiovascular Disease, Cancer, Arthritis, Cataract, Osteoporosis, Diabetes, and Hypertension. The journal welcomes studies involving animal models as well as human tissues or cells.