Structural analysis of M. tuberculosis EccC1 and its complex with EsxAB virulence factor using X-ray crystallography, molecular docking, and dynamics simulation techniques.

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ajay K Saxena, Anshuman Chandra, Swati Srivastava, Ramesh Kumar
{"title":"Structural analysis of M. tuberculosis EccC1 and its complex with EsxAB virulence factor using X-ray crystallography, molecular docking, and dynamics simulation techniques.","authors":"Ajay K Saxena, Anshuman Chandra, Swati Srivastava, Ramesh Kumar","doi":"10.1016/j.ijbiomac.2025.145279","DOIUrl":null,"url":null,"abstract":"<p><p>M. tuberculosis ESX-1 system secretes virulence factors into host macrophages during infection, however, the mechanism of secretion is currently unknown. Here, we have determined the crystal structure of MtbEccCb1-D2 protein (Leu34-Ser313 residues, Mw ~ 31.4 kDa) in complex with ATPγS and Mg<sup>2+</sup>, which adopts a classical Ftsk/SpoEIII type fold. The EccCb1-D2 showed two melting temperatures, Tm1 at 37.64 ± 0.08 °C and Tm2 at 65.85 ± 0.12 °C, during the unfolding pathway. Modeled ∆EccC1 and ∆EccC1 + EsxAB hexamers showed a channel (~34 Å) involved in EsxAB (~29 Å) translocation toward the inner membrane. At the entrance gate of the channel, the LxxxMxF motif of the EsxB export arm binds to the substrate binding pocket of the EccCb1-D3 protein. Inside the channel, the PL-1 and PL-2 pore loops, close to the α7-helix and the loop between β8-β9 strands in EccCa1-D1, EccCb1-D2, and EccCb1-D3 may be involved in EsxAB factor translocation. Stability, fluctuation, and compactness parameters in 100 ns dynamics simulation analysis showed the highest flexibility in ΔEccCa1, ∆EccC1, and ∆EccC1 + EsxAB hexamers and stability in ΔEccCb1 hexamer. Our EccCb1-D2 structure and dynamics simulation analysis on four modeled systems have revealed the mechanism involved in EsxAB translocation, a key target for the development of antivirulence inhibitors against M. tuberculosis.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"145279"},"PeriodicalIF":7.7000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.145279","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

M. tuberculosis ESX-1 system secretes virulence factors into host macrophages during infection, however, the mechanism of secretion is currently unknown. Here, we have determined the crystal structure of MtbEccCb1-D2 protein (Leu34-Ser313 residues, Mw ~ 31.4 kDa) in complex with ATPγS and Mg2+, which adopts a classical Ftsk/SpoEIII type fold. The EccCb1-D2 showed two melting temperatures, Tm1 at 37.64 ± 0.08 °C and Tm2 at 65.85 ± 0.12 °C, during the unfolding pathway. Modeled ∆EccC1 and ∆EccC1 + EsxAB hexamers showed a channel (~34 Å) involved in EsxAB (~29 Å) translocation toward the inner membrane. At the entrance gate of the channel, the LxxxMxF motif of the EsxB export arm binds to the substrate binding pocket of the EccCb1-D3 protein. Inside the channel, the PL-1 and PL-2 pore loops, close to the α7-helix and the loop between β8-β9 strands in EccCa1-D1, EccCb1-D2, and EccCb1-D3 may be involved in EsxAB factor translocation. Stability, fluctuation, and compactness parameters in 100 ns dynamics simulation analysis showed the highest flexibility in ΔEccCa1, ∆EccC1, and ∆EccC1 + EsxAB hexamers and stability in ΔEccCb1 hexamer. Our EccCb1-D2 structure and dynamics simulation analysis on four modeled systems have revealed the mechanism involved in EsxAB translocation, a key target for the development of antivirulence inhibitors against M. tuberculosis.

利用x射线晶体学、分子对接和动力学模拟技术分析结核分枝杆菌EccC1及其与EsxAB毒力因子复合物的结构。
结核分枝杆菌ESX-1系统在感染过程中向宿主巨噬细胞分泌毒力因子,但其分泌机制目前尚不清楚。在这里,我们确定了MtbEccCb1-D2蛋白(Leu34-Ser313残基,Mw ~ 31.4 kDa)与atp - γ s和Mg2+配合物的晶体结构,其采用经典的Ftsk/SpoEIII型折叠。EccCb1-D2在展开过程中表现出两个熔融温度,Tm1为37.64 ± 0.08 °C, Tm2为65.85 ± 0.12 °C。模拟的∆EccC1和∆EccC1 + EsxAB六聚体显示了一个参与EsxAB(~29 Å)向内膜易位的通道(~34 Å)。在通道的入口,EsxB输出臂的LxxxMxF基序与EccCb1-D3蛋白的底物结合袋结合。通道内靠近α7螺旋的PL-1和PL-2孔环以及EccCa1-D1、EccCb1-D2和EccCb1-D3中β8-β9链之间的环可能参与EsxAB因子易位。100 ns动力学模拟分析中的稳定性、波动性和致密性参数显示,ΔEccCa1、∆EccC1和∆EccC1 + EsxAB六聚体的灵活性最高,ΔEccCb1六聚体的稳定性最高。我们对四个模型系统的EccCb1-D2结构和动力学模拟分析揭示了EsxAB易位的机制,这是开发抗结核分枝杆菌抗毒力抑制剂的关键靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信