Microalgae-based bio-fabrication using zinc oxide-chitosan nanocomposite for industrial effluent degradation and pollutant reduction

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Karthik Subramani , Naren Vidaarth Tamilselvi Mohanasundaram , Surendhiran Srinivasan , Jagan Krishnaveni Selva Ganeshan , Aran Incharoensakdi
{"title":"Microalgae-based bio-fabrication using zinc oxide-chitosan nanocomposite for industrial effluent degradation and pollutant reduction","authors":"Karthik Subramani ,&nbsp;Naren Vidaarth Tamilselvi Mohanasundaram ,&nbsp;Surendhiran Srinivasan ,&nbsp;Jagan Krishnaveni Selva Ganeshan ,&nbsp;Aran Incharoensakdi","doi":"10.1016/j.ijbiomac.2025.145379","DOIUrl":null,"url":null,"abstract":"<div><div>The current study investigates the photocatalytic degradation of harmful pollutants from the textile and pharmaceutical industries. Specifically, a chitosan zinc nanocomposite's high photocatalytic degradation efficiency was demonstrated. Zinc nanoparticles were synthesized using an extract derived from <em>Chlorella</em> sp. as a reducing agent. XRD analysis revealed a crystal size of 21 nm for the nanocomposite, confirming its hexagonal phase with a wurtzite structure. Particle size analysis determined an average particle size of 38.7 nm for the nanocomposite. The nanocomposite's photocatalytic degradation of the textile pollutant (methyl orange) and the pharmaceutical pollutant (metformin) was evaluated, achieving 98.7 % degradation in 90 min and 98.2 % degradation in 120 min, respectively. Notably, chitosan zinc nanocomposite exhibited maximum degradation efficiencies of 99.1 % and 98.9 %, respectively, against methylene blue and rhodamine B dyes after 105 min, whereas congo red and eosin yellow achieved 96.8 % and 95.5 % degradation efficiencies after 120 min, respectively. Following the degradation process, the photocatalyst's stability and reusability were assessed over seven cycles. Furthermore, the antibacterials and antioxidant activity of the nanocomposite were evaluated, demonstrating superior performance compared to standard agents. These results highlight the multifunctional capabilities of chitosan zinc nanocomposite for environmental remediation and biomedical applications.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"319 ","pages":"Article 145379"},"PeriodicalIF":7.7000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813025059343","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The current study investigates the photocatalytic degradation of harmful pollutants from the textile and pharmaceutical industries. Specifically, a chitosan zinc nanocomposite's high photocatalytic degradation efficiency was demonstrated. Zinc nanoparticles were synthesized using an extract derived from Chlorella sp. as a reducing agent. XRD analysis revealed a crystal size of 21 nm for the nanocomposite, confirming its hexagonal phase with a wurtzite structure. Particle size analysis determined an average particle size of 38.7 nm for the nanocomposite. The nanocomposite's photocatalytic degradation of the textile pollutant (methyl orange) and the pharmaceutical pollutant (metformin) was evaluated, achieving 98.7 % degradation in 90 min and 98.2 % degradation in 120 min, respectively. Notably, chitosan zinc nanocomposite exhibited maximum degradation efficiencies of 99.1 % and 98.9 %, respectively, against methylene blue and rhodamine B dyes after 105 min, whereas congo red and eosin yellow achieved 96.8 % and 95.5 % degradation efficiencies after 120 min, respectively. Following the degradation process, the photocatalyst's stability and reusability were assessed over seven cycles. Furthermore, the antibacterials and antioxidant activity of the nanocomposite were evaluated, demonstrating superior performance compared to standard agents. These results highlight the multifunctional capabilities of chitosan zinc nanocomposite for environmental remediation and biomedical applications.
氧化锌-壳聚糖纳米复合材料制备微藻降解工业废水及降低污染物。
本文研究了光催化降解纺织和制药工业中有害污染物的方法。具体而言,壳聚糖锌纳米复合材料具有较高的光催化降解效率。以小球藻提取物为还原剂合成锌纳米颗粒。XRD分析表明,该纳米复合材料的晶体尺寸为21 nm,具有纤锌矿结构的六方相。粒径分析确定纳米复合材料的平均粒径为38.7 nm。评价了纳米复合材料对纺织污染物(甲基橙)和医药污染物(二甲双胍)的光催化降解效果,分别在90 min和120 min内达到98.7 %和98.2 %的降解效果。值得注意的是,壳聚糖锌纳米复合材料在105 min后对亚甲基蓝和罗丹明B染料的降解效率分别达到99.1 %和98.9 %,而在120 min后对刚果红和伊红黄的降解效率分别达到96.8 %和95.5 %。在降解过程中,光催化剂的稳定性和可重复使用性在七个循环中进行了评估。此外,对纳米复合材料的抗菌和抗氧化活性进行了评价,与标准剂相比,显示出优越的性能。这些结果突出了壳聚糖锌纳米复合材料在环境修复和生物医学方面的多功能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信