{"title":"Preliminary design and key components validation of modular recuperated micro gas turbine for small unmanned systems","authors":"Zuojun Wei , Wenhua Duan , Haotian Gao , Cunju Wei , Guangming Ren , Xiaohua Gan","doi":"10.1016/j.csite.2025.106547","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an overview of the preliminary design of a modular recuperated micro gas turbine for small unmanned systems, demonstrating the technical feasibility of this integrated power solution. Analysis identifies a pressure ratio near 5.0 as optimal and feasible for the high-power scheme, balancing flow-specific power and thermal efficiency. Electrical power outputs between 15 kW and 150 kW are achievable, with specific fuel consumption (SFC) lower than 0.225 kg/(kW∙h) for outputs exceeding 50 kW. At 150 kW point, thermal efficiency for electricity reaches 37.3 % with an SFC of 0.2294 kg/(kW∙h). The low-power scheme achieves 0.78 isentropic efficiency at a pressure ratio of 2.85, with turbine efficiency higher than 0.825. The high-power scheme's compressor achieves an efficiency of 0.798 with a pressure ratio of 5.08, and the turbine efficiency reaches 0.897. Experimental testing of the single-can combustor shows a total pressure loss of 3.29 % and combustion efficiency of 97.13 % at design point. The cross-corrugated primary surface recuperator achieves an effectiveness of 0.9195 and total pressure loss of 3.69 % at a heat-weight ratio of 7.76 kW/kg.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"73 ","pages":"Article 106547"},"PeriodicalIF":6.4000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X2500807X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an overview of the preliminary design of a modular recuperated micro gas turbine for small unmanned systems, demonstrating the technical feasibility of this integrated power solution. Analysis identifies a pressure ratio near 5.0 as optimal and feasible for the high-power scheme, balancing flow-specific power and thermal efficiency. Electrical power outputs between 15 kW and 150 kW are achievable, with specific fuel consumption (SFC) lower than 0.225 kg/(kW∙h) for outputs exceeding 50 kW. At 150 kW point, thermal efficiency for electricity reaches 37.3 % with an SFC of 0.2294 kg/(kW∙h). The low-power scheme achieves 0.78 isentropic efficiency at a pressure ratio of 2.85, with turbine efficiency higher than 0.825. The high-power scheme's compressor achieves an efficiency of 0.798 with a pressure ratio of 5.08, and the turbine efficiency reaches 0.897. Experimental testing of the single-can combustor shows a total pressure loss of 3.29 % and combustion efficiency of 97.13 % at design point. The cross-corrugated primary surface recuperator achieves an effectiveness of 0.9195 and total pressure loss of 3.69 % at a heat-weight ratio of 7.76 kW/kg.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.