Applying multimodal AI to physiological waveforms improves genetic prediction of cardiovascular traits

IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY
Yuchen Zhou, Justin Khasentino, Taedong Yun, Mahantesh I. Biradar, Jacqueline Shreibati, Dongbing Lai, Tae-Hwi Schwantes-An, Robert Luben, Zachary R. McCaw, Jorgen Engmann, Rui Providencia, Amand Floriaan Schmidt, Patricia B. Munroe, Howard Yang, Andrew Carroll, Anthony P. Khawaja, Cory Y. McLean, Babak Behsaz, Farhad Hormozdiari
{"title":"Applying multimodal AI to physiological waveforms improves genetic prediction of cardiovascular traits","authors":"Yuchen Zhou, Justin Khasentino, Taedong Yun, Mahantesh I. Biradar, Jacqueline Shreibati, Dongbing Lai, Tae-Hwi Schwantes-An, Robert Luben, Zachary R. McCaw, Jorgen Engmann, Rui Providencia, Amand Floriaan Schmidt, Patricia B. Munroe, Howard Yang, Andrew Carroll, Anthony P. Khawaja, Cory Y. McLean, Babak Behsaz, Farhad Hormozdiari","doi":"10.1016/j.ajhg.2025.05.015","DOIUrl":null,"url":null,"abstract":"Electronic health records, biobanks, and wearable biosensors enable the collection of multiple health modalities from many individuals. Access to multimodal health data provides a unique opportunity for genetic studies of complex traits because different modalities relevant to a single physiological system (e.g., circulatory system) encode complementary and overlapping information. We propose a multimodal deep learning method, multimodal representation learning for genetic discovery on low-dimensional embeddings (M-REGLE), for discovering genetic associations from a joint representation of complementary electrophysiological waveform modalities. M-REGLE jointly learns a lower representation (i.e., latent factors) of multimodal physiological waveforms using a convolutional variational autoencoder, performs genome-wide association studies (GWASs) on each latent factor, then combines the results to study the genetics of the underlying system. To validate the advantages of M-REGLE and multimodal learning, we apply it to common cardiovascular modalities (photoplethysmogram [PPG] and electrocardiogram [ECG]) and compare its results to unimodal learning methods in which representations are learned from each data modality separately but are statistically combined for downstream genetic comparison. M-REGLE identifies 19.3% more loci on the 12-lead ECG dataset, 13.0% more loci on the ECG lead I + PPG dataset, and its genetic risk score significantly outperforms the unimodal risk score at predicting cardiac phenotypes, such as atrial fibrillation (Afib), in multiple biobanks.","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":"101 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.05.015","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Electronic health records, biobanks, and wearable biosensors enable the collection of multiple health modalities from many individuals. Access to multimodal health data provides a unique opportunity for genetic studies of complex traits because different modalities relevant to a single physiological system (e.g., circulatory system) encode complementary and overlapping information. We propose a multimodal deep learning method, multimodal representation learning for genetic discovery on low-dimensional embeddings (M-REGLE), for discovering genetic associations from a joint representation of complementary electrophysiological waveform modalities. M-REGLE jointly learns a lower representation (i.e., latent factors) of multimodal physiological waveforms using a convolutional variational autoencoder, performs genome-wide association studies (GWASs) on each latent factor, then combines the results to study the genetics of the underlying system. To validate the advantages of M-REGLE and multimodal learning, we apply it to common cardiovascular modalities (photoplethysmogram [PPG] and electrocardiogram [ECG]) and compare its results to unimodal learning methods in which representations are learned from each data modality separately but are statistically combined for downstream genetic comparison. M-REGLE identifies 19.3% more loci on the 12-lead ECG dataset, 13.0% more loci on the ECG lead I + PPG dataset, and its genetic risk score significantly outperforms the unimodal risk score at predicting cardiac phenotypes, such as atrial fibrillation (Afib), in multiple biobanks.
将多模态人工智能应用于生理波形可以改善心血管特征的遗传预测
电子健康记录、生物银行和可穿戴生物传感器能够收集许多个人的多种健康模式。获取多模式健康数据为复杂性状的遗传研究提供了独特的机会,因为与单一生理系统(如循环系统)相关的不同模式编码了互补和重叠的信息。我们提出了一种多模态深度学习方法,即用于低维嵌入遗传发现的多模态表示学习(M-REGLE),用于从互补电生理波形模式的联合表示中发现遗传关联。M-REGLE使用卷积变分自编码器共同学习多模态生理波形的较低表示(即潜在因素),对每个潜在因素进行全基因组关联研究(GWASs),然后将结果结合起来研究潜在系统的遗传学。为了验证M-REGLE和多模态学习的优势,我们将其应用于常见的心血管模式(光体积描记图[PPG]和心电图[ECG]),并将其结果与单模态学习方法进行比较,单模态学习方法分别从每个数据模式中学习表征,但在下游遗传比较中进行统计组合。M-REGLE在12导联心电图数据集中多识别19.3%的基因座,在ECG导联I + PPG数据集中多识别13.0%的基因座,其遗传风险评分在多个生物库中预测心脏表型(如心房颤动(Afib))方面显著优于单峰风险评分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.70
自引率
4.10%
发文量
185
审稿时长
1 months
期刊介绍: The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信