Cu alloying enabling dual biocorrosion suppression and fatigue crack mitigation in SLM-processed titanium implants with retained osteogenic activity

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xing Zhou, Enze Zhou, Yilan Wang, Yongqiang Fan, Chunguang Bai, Lin Wu, Dake Xu, Qiang Wang, Dan Zhang, Fuhui Wang
{"title":"Cu alloying enabling dual biocorrosion suppression and fatigue crack mitigation in SLM-processed titanium implants with retained osteogenic activity","authors":"Xing Zhou, Enze Zhou, Yilan Wang, Yongqiang Fan, Chunguang Bai, Lin Wu, Dake Xu, Qiang Wang, Dan Zhang, Fuhui Wang","doi":"10.1016/j.jmst.2025.06.006","DOIUrl":null,"url":null,"abstract":"Titanium (Ti) alloys are extensively utilized in dental and orthopedic implants due to superior mechanical strength, biocompatibility, and corrosion resistance. Their vulnerability to concurrent microbiologically influenced corrosion (MIC) under oral biofilm colonization and cyclic fatigue critically compromises long-term reliability. While antibacterial functionality integration with MIC resistance remains underexplored in Ti alloys, the synergistic effect of copper (Cu) alloying on corrosion-fatigue performance in physiological environments represents a significant knowledge gap. This study systematically investigates MIC and corrosion-fatigue degradation mechanisms of selective laser melting (SLM)-processed Ti versus Ti-5Cu alloys exposed to <em>Streptococcus mutans</em> (<em>S. mutans</em>). Multimodal characterization integrating electrochemical analysis, <em>in-situ</em> fatigue monitoring, and surface/microstructural diagnostics reveal synergistic enhancements in biofilm-inhibiting capability and fatigue durability through Cu incorporation. After 14-day incubation with <em>S. mutans</em>, Ti-5Cu exhibits 48% lower corrosion current density than pure Ti, attributed to Cu-mediated biofilm suppression. Following 90 days of dual microbial/cyclic stress exposure, Ti-5Cu demonstrates 47.5% reduced ultimate tensile strength loss (42.5 vs. 81 MPa) and 57.3% lower fatigue life degradation (15.1 vs. 35.4 MPa). Crucially, 70% shallower maximum pitting depth (3.3 vs. 10.9 μm) and inhibited crack propagation directly correlate with Cu’s antimicrobial efficacy. SLM-driven microstructural refinement further amplifies damage tolerance. Cytocompatibility assays confirm uncompromised cell viability and osteoblast adhesion on alloyed surfaces. These findings establish a dual-functional implant design paradigm combining antimicrobial surface chemistry with fatigue-resistant microstructural engineering to extend biomedical device service lifetimes.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"25 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.06.006","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Titanium (Ti) alloys are extensively utilized in dental and orthopedic implants due to superior mechanical strength, biocompatibility, and corrosion resistance. Their vulnerability to concurrent microbiologically influenced corrosion (MIC) under oral biofilm colonization and cyclic fatigue critically compromises long-term reliability. While antibacterial functionality integration with MIC resistance remains underexplored in Ti alloys, the synergistic effect of copper (Cu) alloying on corrosion-fatigue performance in physiological environments represents a significant knowledge gap. This study systematically investigates MIC and corrosion-fatigue degradation mechanisms of selective laser melting (SLM)-processed Ti versus Ti-5Cu alloys exposed to Streptococcus mutans (S. mutans). Multimodal characterization integrating electrochemical analysis, in-situ fatigue monitoring, and surface/microstructural diagnostics reveal synergistic enhancements in biofilm-inhibiting capability and fatigue durability through Cu incorporation. After 14-day incubation with S. mutans, Ti-5Cu exhibits 48% lower corrosion current density than pure Ti, attributed to Cu-mediated biofilm suppression. Following 90 days of dual microbial/cyclic stress exposure, Ti-5Cu demonstrates 47.5% reduced ultimate tensile strength loss (42.5 vs. 81 MPa) and 57.3% lower fatigue life degradation (15.1 vs. 35.4 MPa). Crucially, 70% shallower maximum pitting depth (3.3 vs. 10.9 μm) and inhibited crack propagation directly correlate with Cu’s antimicrobial efficacy. SLM-driven microstructural refinement further amplifies damage tolerance. Cytocompatibility assays confirm uncompromised cell viability and osteoblast adhesion on alloyed surfaces. These findings establish a dual-functional implant design paradigm combining antimicrobial surface chemistry with fatigue-resistant microstructural engineering to extend biomedical device service lifetimes.

Abstract Image

Cu合金在slm加工的钛植入物中实现双重生物腐蚀抑制和疲劳裂纹缓解,并保留成骨活性
钛(Ti)合金因其优异的机械强度、生物相容性和耐腐蚀性被广泛应用于牙科和骨科植入物中。它们在口腔生物膜定植和循环疲劳下易受微生物影响腐蚀(MIC)的影响,严重影响了它们的长期可靠性。虽然Ti合金的抗菌功能与耐MIC性能的整合尚未得到充分研究,但铜(Cu)合金对生理环境中腐蚀疲劳性能的协同效应仍是一个重大的知识缺口。本研究系统地研究了选择性激光熔化(SLM)处理的Ti与Ti- 5cu合金暴露于变形链球菌(S. mutans)下的MIC和腐蚀疲劳降解机制。结合电化学分析、现场疲劳监测和表面/微观结构诊断的多模态表征表明,Cu的加入可协同增强生物膜抑制能力和疲劳耐久性。与变形链球菌孵育14天后,由于cu介导的生物膜抑制作用,Ti- 5cu的腐蚀电流密度比纯Ti低48%。经过90天的双重微生物/循环应力暴露,Ti-5Cu的极限拉伸强度损失降低了47.5%(42.5比81 MPa),疲劳寿命降低了57.3%(15.1比35.4 MPa)。最重要的是,最大点蚀深度浅70% (3.3 vs 10.9 μm)和抑制的裂纹扩展与Cu的抗菌效果直接相关。slm驱动的微结构改进进一步提高了损伤容忍度。细胞相容性测定证实细胞活力和成骨细胞在合金表面的粘附不受影响。这些发现建立了一种结合抗菌表面化学和抗疲劳微结构工程的双功能植入物设计范式,以延长生物医学设备的使用寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信