Neuraminidase 1 secondary deficiency contributes to CNS pathology in neurological mucopolysaccharidoses via brain proteins hypersialylation.

TianMeng Xu,Rachel Heon-Roberts,Travis Moore,Patricia Dubot,Xuefang Pan,Tianlin Guo,Christopher W Cairo,Rebecca J Holley,Brian Bigger,Thomas M Durcan,Thierry Levade,Jerôme Ausseil,Bénédicte Amilhon,Alexei Gorelik,Bhushan Nagar,Shaukat Khan,Shunji Tomatsu,Luisa Sturiale,Angelo Palmigiano,Iris Röckle,Hauke Thiesler,Herbert Hildebrandt,Domenico Garozzo,Alexey V Pshezhetsky
{"title":"Neuraminidase 1 secondary deficiency contributes to CNS pathology in neurological mucopolysaccharidoses via brain proteins hypersialylation.","authors":"TianMeng Xu,Rachel Heon-Roberts,Travis Moore,Patricia Dubot,Xuefang Pan,Tianlin Guo,Christopher W Cairo,Rebecca J Holley,Brian Bigger,Thomas M Durcan,Thierry Levade,Jerôme Ausseil,Bénédicte Amilhon,Alexei Gorelik,Bhushan Nagar,Shaukat Khan,Shunji Tomatsu,Luisa Sturiale,Angelo Palmigiano,Iris Röckle,Hauke Thiesler,Herbert Hildebrandt,Domenico Garozzo,Alexey V Pshezhetsky","doi":"10.1172/jci177430","DOIUrl":null,"url":null,"abstract":"Mucopolysaccharidoses (MPS) are lysosomal storage diseases caused by defects in catabolism of glycosaminoglycans. MPS I, II, III and VII, associated with lysosomal accumulation of heparan sulphate (HS), manifest with neurological deterioration and currently lack effective treatments. We report that neuraminidase 1 (NEU1) activity is drastically reduced in brain tissues of neurological MPS patients and mouse models but not in neurological lysosomal disorders without HS storage. Accumulated HS disrupts the lysosomal multienzyme complex of NEU1 with cathepsin A (CTSA), β-galactosidase (GLB1) and glucosamine-6-sulfate sulfatase (GALNS) leading to NEU1 deficiency and partial GLB1 and GALNS deficiencies in cortical tissues and iPSC-derived cortical neurons of neurological MPS patients. Increased sialylation of N-linked glycans in brains of MPS patients and mice implicated insufficient processing of sialylated glycans, except for polysialic acid. Correction of NEU1 activity in MPS IIIC mice by lentiviral gene transfer ameliorated previously identified hallmarks of the disease, including memory impairment, behavioural traits, and reduced levels of excitatory synapse markers VGLUT1 and PSD95. Overexpression of NEU1 also restored levels of VGLUT1/PSD95-positive puncta in cortical iPSC-derived MPS IIIA neurons. Our results demonstrate that HS-induced secondary NEU1 deficiency and aberrant sialylation of brain glycoproteins constitute what we believe to be a novel pathological pathway in neurological MPS spectrum crucially contributing to CNS pathology.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"608 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Clinical Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1172/jci177430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mucopolysaccharidoses (MPS) are lysosomal storage diseases caused by defects in catabolism of glycosaminoglycans. MPS I, II, III and VII, associated with lysosomal accumulation of heparan sulphate (HS), manifest with neurological deterioration and currently lack effective treatments. We report that neuraminidase 1 (NEU1) activity is drastically reduced in brain tissues of neurological MPS patients and mouse models but not in neurological lysosomal disorders without HS storage. Accumulated HS disrupts the lysosomal multienzyme complex of NEU1 with cathepsin A (CTSA), β-galactosidase (GLB1) and glucosamine-6-sulfate sulfatase (GALNS) leading to NEU1 deficiency and partial GLB1 and GALNS deficiencies in cortical tissues and iPSC-derived cortical neurons of neurological MPS patients. Increased sialylation of N-linked glycans in brains of MPS patients and mice implicated insufficient processing of sialylated glycans, except for polysialic acid. Correction of NEU1 activity in MPS IIIC mice by lentiviral gene transfer ameliorated previously identified hallmarks of the disease, including memory impairment, behavioural traits, and reduced levels of excitatory synapse markers VGLUT1 and PSD95. Overexpression of NEU1 also restored levels of VGLUT1/PSD95-positive puncta in cortical iPSC-derived MPS IIIA neurons. Our results demonstrate that HS-induced secondary NEU1 deficiency and aberrant sialylation of brain glycoproteins constitute what we believe to be a novel pathological pathway in neurological MPS spectrum crucially contributing to CNS pathology.
神经氨酸酶1继发性缺乏通过脑蛋白高唾液化导致神经粘多糖病的中枢神经系统病理。
粘多糖病(MPS)是由糖胺聚糖分解代谢缺陷引起的溶酶体贮积病。MPS I、II、III和VII与硫酸肝素溶酶体积聚有关,表现为神经功能恶化,目前缺乏有效的治疗方法。我们报道神经氨酸酶1 (NEU1)活性在神经性MPS患者和小鼠模型的脑组织中急剧降低,但在没有HS储存的神经溶酶体疾病中没有。累积的HS破坏NEU1与组织蛋白酶A (CTSA)、β-半乳糖苷酶(GLB1)和氨基葡萄糖-6-硫酸盐硫酸酯酶(GALNS)的溶酶体多酶复合物,导致神经性MPS患者皮质组织和ipsc衍生的皮质神经元NEU1缺乏和部分GLB1和GALNS缺乏。多磺酸粘多糖患者和小鼠大脑中n -链聚糖唾液酰化的增加暗示了唾液酰化的聚糖加工不足,除了聚唾液酸。通过慢病毒基因转移纠正MPS IIIC小鼠NEU1活性改善了先前确定的疾病特征,包括记忆障碍、行为特征和兴奋性突触标记物VGLUT1和PSD95水平降低。NEU1的过表达也恢复了皮层ipsc衍生的MPS IIIA神经元中VGLUT1/ psd95阳性点的水平。我们的研究结果表明,hs诱导的继发性NEU1缺乏和脑糖蛋白的异常唾液化构成了我们认为在神经MPS谱中对中枢神经系统病理至关重要的一种新的病理途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信