Shengyu Tao, Ruohan Guo, Jaewoong Lee, Scott Moura, Lluc Canals Casals, Shida Jiang, Junzhe Shi, Stephen J Harris, Tongda Zhang, Chi-Yung Chung, Guangmin Zhou, Jinpeng Tian, Xuan Zhang
{"title":"Immediate remaining capacity estimation of heterogeneous second-life lithium-ion batteries via deep generative transfer learning","authors":"Shengyu Tao, Ruohan Guo, Jaewoong Lee, Scott Moura, Lluc Canals Casals, Shida Jiang, Junzhe Shi, Stephen J Harris, Tongda Zhang, Chi-Yung Chung, Guangmin Zhou, Jinpeng Tian, Xuan Zhang","doi":"10.1039/d5ee02217g","DOIUrl":null,"url":null,"abstract":"The reuse of second-life lithium-ion batteries (LIBs) retired from electric vehicles is critical for energy storage in underdeveloped regions, where power infrastructures is weak or absent. However, estimating the relative remaining capacity (RRC) of second-life batteries using field-accessible data stream remains challenging due to its scarcity and heterogeneity, despite efforts in battery passports and other initiatives to secure data integrity. This study proposes a deep generative transfer learning framework to address these two-fold challenges by generating voltage dynamics across state-of-charge (SOC) and using deep correlation alignment (CORAL) to align heterogeneities resulting from different aging patterns (domains) of second-life LIBs. We generate voltage response dynamics data across various SOC conditions from 20,160 samples under 10 SOC values, demonstrating high statistical similarities and confidence. The model estimates the RRC with minimal field data availability, specifically 2% of the full sample size, achieving a mean absolute percentage error of 7.2% and 3.6% for second-life batteries with different degradation behaviors, respectively. The model preserves established knowledge in the available domain while reducing RRC estimation risks in new domains where data availability is limited. The maximum RRC estimation risk is reduced by 49% at a 95% confidence level. This unified data generation and transfer learning paradigm outperforms state-of-the-art machine learning and equivalent circuit model- method across all data availability conditions. The “generate and transfer” paradigm enlightens many potential applications in other predictive management tasks by preferentially generalizing in-distribution data and then adapting to out-of-distribution conditions under guidance of limited field data.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"146 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5ee02217g","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The reuse of second-life lithium-ion batteries (LIBs) retired from electric vehicles is critical for energy storage in underdeveloped regions, where power infrastructures is weak or absent. However, estimating the relative remaining capacity (RRC) of second-life batteries using field-accessible data stream remains challenging due to its scarcity and heterogeneity, despite efforts in battery passports and other initiatives to secure data integrity. This study proposes a deep generative transfer learning framework to address these two-fold challenges by generating voltage dynamics across state-of-charge (SOC) and using deep correlation alignment (CORAL) to align heterogeneities resulting from different aging patterns (domains) of second-life LIBs. We generate voltage response dynamics data across various SOC conditions from 20,160 samples under 10 SOC values, demonstrating high statistical similarities and confidence. The model estimates the RRC with minimal field data availability, specifically 2% of the full sample size, achieving a mean absolute percentage error of 7.2% and 3.6% for second-life batteries with different degradation behaviors, respectively. The model preserves established knowledge in the available domain while reducing RRC estimation risks in new domains where data availability is limited. The maximum RRC estimation risk is reduced by 49% at a 95% confidence level. This unified data generation and transfer learning paradigm outperforms state-of-the-art machine learning and equivalent circuit model- method across all data availability conditions. The “generate and transfer” paradigm enlightens many potential applications in other predictive management tasks by preferentially generalizing in-distribution data and then adapting to out-of-distribution conditions under guidance of limited field data.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).