Regulation of m6A RNA reader protein OsECT3 activity by lysine acetylation in the cold stress response in rice

IF 15.8 1区 生物学 Q1 PLANT SCIENCES
Nini Ma, Peizhe Song, Ziyang Liu, Yangjie Li, Zhihe Cai, Mengyue Ding, Xuan Ma, Qiutao Xu, Yaping Yue, Tangdi Luo, Dao-Xiu Zhou, Guifang Jia, Yu Zhao
{"title":"Regulation of m6A RNA reader protein OsECT3 activity by lysine acetylation in the cold stress response in rice","authors":"Nini Ma, Peizhe Song, Ziyang Liu, Yangjie Li, Zhihe Cai, Mengyue Ding, Xuan Ma, Qiutao Xu, Yaping Yue, Tangdi Luo, Dao-Xiu Zhou, Guifang Jia, Yu Zhao","doi":"10.1038/s41477-025-02013-w","DOIUrl":null,"url":null,"abstract":"<p><i>N</i><sup>6</sup>-Methyladenosine (m<sup>6</sup>A) reader proteins, which recognize m<sup>6</sup>A to regulate RNA metabolism, are important for plant adaptation to the changing environment. It remains unknown how the activities of plant m<sup>6</sup>A reader proteins are regulated in plant responses to stress. Here we show that the rice m<sup>6</sup>A reader protein EVOLUTIONARILY CONSERVED C-TERMINAL REGION 3 (OsECT3), required for rice tolerance to cold, is post-translationally modified by lysine acetylation, which reduces its m<sup>6</sup>A-binding activity. Under cold conditions, OsECT3 acetylation is reduced by cold-induced histone deacetylase HDA705 and low ACLA2-sourced acetyl-CoA levels, resulting in an increase in OsECT3 m<sup>6</sup>A-binding activity, the accumulation of cold-response-related mRNAs and improved tolerance of rice to cold stress. These results unravel a regulatory mechanism of an m<sup>6</sup>A reader protein to dynamically control m<sup>6</sup>A RNA levels under stress and suggest a link between lysine acetylation, metabolism and m<sup>6</sup>A pathways.</p>","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"15 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41477-025-02013-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

N6-Methyladenosine (m6A) reader proteins, which recognize m6A to regulate RNA metabolism, are important for plant adaptation to the changing environment. It remains unknown how the activities of plant m6A reader proteins are regulated in plant responses to stress. Here we show that the rice m6A reader protein EVOLUTIONARILY CONSERVED C-TERMINAL REGION 3 (OsECT3), required for rice tolerance to cold, is post-translationally modified by lysine acetylation, which reduces its m6A-binding activity. Under cold conditions, OsECT3 acetylation is reduced by cold-induced histone deacetylase HDA705 and low ACLA2-sourced acetyl-CoA levels, resulting in an increase in OsECT3 m6A-binding activity, the accumulation of cold-response-related mRNAs and improved tolerance of rice to cold stress. These results unravel a regulatory mechanism of an m6A reader protein to dynamically control m6A RNA levels under stress and suggest a link between lysine acetylation, metabolism and m6A pathways.

Abstract Image

水稻冷胁迫响应中赖氨酸乙酰化对m6A RNA解读蛋白OsECT3活性的调控
n6 -甲基腺苷(m6A)解读蛋白识别m6A调控RNA代谢,对植物适应环境变化具有重要意义。目前尚不清楚植物m6A解读蛋白的活性是如何在植物对逆境的反应中被调节的。在这里,我们发现水稻m6A读取器蛋白进化上保守的c -末端3区(OsECT3)是水稻耐冷所必需的,在翻译后被赖氨酸乙酰化修饰,从而降低了其m6A结合活性。在寒冷条件下,低温诱导的组蛋白去乙酰化酶HDA705和低acla2来源的乙酰辅酶a水平降低了OsECT3乙酰化,导致OsECT3 m6a结合活性增加,冷响应相关mrna积累,提高了水稻对冷胁迫的耐受性。这些结果揭示了m6A解读蛋白在应激条件下动态控制m6A RNA水平的调控机制,并表明赖氨酸乙酰化、代谢和m6A途径之间存在联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Plants
Nature Plants PLANT SCIENCES-
CiteScore
25.30
自引率
2.20%
发文量
196
期刊介绍: Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信