Xiaolong Shen, Jinquan Hu, Chen Wang, Haoyi Wang, Huajian Zhong, Zifan Zhang, Guoqing Wen, Lei Wang, Minjie Dong, Ye Tian
{"title":"Mitochondria-targeted NAD+/O2 co-delivery interpenetrating network hydrogel for respiratory chain restoration and osteoarthritis therapy","authors":"Xiaolong Shen, Jinquan Hu, Chen Wang, Haoyi Wang, Huajian Zhong, Zifan Zhang, Guoqing Wen, Lei Wang, Minjie Dong, Ye Tian","doi":"10.1016/j.jconrel.2025.113975","DOIUrl":null,"url":null,"abstract":"Mitochondrial respiratory chain dysfunction-induced chondrocyte senescence is a key contributor to the progression of osteoarthritis (OA), yet effective strategies for restoring mitochondrial respiratory homeostasis remain elusive. Herein, we develop a charge-guided micro/nano interpenetrating network hydrogel that targets cartilage and delivers a mitochondria-directed MnO<sub>2</sub>-based nanoparticles, in which the nanozyme catalyzes intracellular hydrogen peroxide to generate oxygen while releasing nicotinamide adenine dinucleotide (NAD<sup>+</sup>) precursor via particle degradation, thereby enabling synchronized electron donor and acceptor supply to fully reactivate the mitochondrial respiratory chain and alleviate chondrocyte senescence. Comprehensive evaluations reveal that this system enhances the activity of key antioxidant enzymes including superoxide dismutase, catalase, and glutathione peroxidase, elevates the intracellular nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide hydrogen (NAD<sup>+</sup>/NADH) ratio, and suppresses the secretion of senescence-associated secretory phenotype factors, thereby preserving cartilage matrix integrity. Collectively, these findings underscore the therapeutic potential of this dual-delivery platform to achieve full-length mitochondrial respiratory chain activation, offering a compelling strategy to mitigate chondrocyte senescence and impede OA progression.","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"57 1","pages":""},"PeriodicalIF":10.5000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jconrel.2025.113975","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial respiratory chain dysfunction-induced chondrocyte senescence is a key contributor to the progression of osteoarthritis (OA), yet effective strategies for restoring mitochondrial respiratory homeostasis remain elusive. Herein, we develop a charge-guided micro/nano interpenetrating network hydrogel that targets cartilage and delivers a mitochondria-directed MnO2-based nanoparticles, in which the nanozyme catalyzes intracellular hydrogen peroxide to generate oxygen while releasing nicotinamide adenine dinucleotide (NAD+) precursor via particle degradation, thereby enabling synchronized electron donor and acceptor supply to fully reactivate the mitochondrial respiratory chain and alleviate chondrocyte senescence. Comprehensive evaluations reveal that this system enhances the activity of key antioxidant enzymes including superoxide dismutase, catalase, and glutathione peroxidase, elevates the intracellular nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide hydrogen (NAD+/NADH) ratio, and suppresses the secretion of senescence-associated secretory phenotype factors, thereby preserving cartilage matrix integrity. Collectively, these findings underscore the therapeutic potential of this dual-delivery platform to achieve full-length mitochondrial respiratory chain activation, offering a compelling strategy to mitigate chondrocyte senescence and impede OA progression.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.