{"title":"Non‐stationary forest responses to hotter droughts: a temporal perspective considering the role of past legacies","authors":"Xavier Serra‐Maluquer, Julen Astigarraga, César Morales-Molino, Paloma Ruiz-Benito","doi":"10.1002/ecog.07740","DOIUrl":null,"url":null,"abstract":"Global change is altering forests worldwide, with multiple consequences for ecosystem functioning. Temporal changes in climate, and extreme, compounded weather events like hotter droughts are affecting the demography, composition and function of forests, leading to a highly uncertain future. To accurately predict future forest responses to hotter droughts, we highlight the need for considering a broad temporal perspective. So far, most ecological studies do not integrate different timespans and temporal resolutions, making it difficult to assess two critical time‐related aspects of forest responses to hotter droughts: the legacies of past disturbances (i.e. the effect of past events on current responses) and their role in non‐stationary responses (i.e. changing effects over time). To incorporate the effect of past hotter droughts on today's forest distribution, structure, composition and function, we identify and define key forcings and forest responses operating across three key timescales, ranging from hours to millennia. First, the shortest timescale considered (i.e. from hours to a decade) usually addresses physiological processes as well as individual tree and population performance. Second, the intermediate timescale (i.e. from decades to centuries) encompasses changes in community composition, stand structure and forest dynamics. Last, the longest timescale (i.e. from centuries to millennia) is crucial for understanding biogeographical processes that shape current species and trait pools. Then, we assess how the contrasting timespans and temporal resolutions used by different ecological subfields and approaches provide critical insights into characterising and understanding the influence of past events on ongoing responses to hotter droughts. We conclude that the holistic view gained from integrating disciplines with complementary temporal perspectives will result in a more comprehensive understanding of forest functioning and we provide a roadmap for achieving this, thereby improving our ability to predict forest responses to climate change.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"26 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/ecog.07740","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Global change is altering forests worldwide, with multiple consequences for ecosystem functioning. Temporal changes in climate, and extreme, compounded weather events like hotter droughts are affecting the demography, composition and function of forests, leading to a highly uncertain future. To accurately predict future forest responses to hotter droughts, we highlight the need for considering a broad temporal perspective. So far, most ecological studies do not integrate different timespans and temporal resolutions, making it difficult to assess two critical time‐related aspects of forest responses to hotter droughts: the legacies of past disturbances (i.e. the effect of past events on current responses) and their role in non‐stationary responses (i.e. changing effects over time). To incorporate the effect of past hotter droughts on today's forest distribution, structure, composition and function, we identify and define key forcings and forest responses operating across three key timescales, ranging from hours to millennia. First, the shortest timescale considered (i.e. from hours to a decade) usually addresses physiological processes as well as individual tree and population performance. Second, the intermediate timescale (i.e. from decades to centuries) encompasses changes in community composition, stand structure and forest dynamics. Last, the longest timescale (i.e. from centuries to millennia) is crucial for understanding biogeographical processes that shape current species and trait pools. Then, we assess how the contrasting timespans and temporal resolutions used by different ecological subfields and approaches provide critical insights into characterising and understanding the influence of past events on ongoing responses to hotter droughts. We conclude that the holistic view gained from integrating disciplines with complementary temporal perspectives will result in a more comprehensive understanding of forest functioning and we provide a roadmap for achieving this, thereby improving our ability to predict forest responses to climate change.
期刊介绍:
ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem.
Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography.
Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.