Temporal trends of blood-based markers in various psychiatric disorders and their cross-sectional brain structure associations.

IF 5.4 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Yu-Jia Wang, Zairen Zhou, Yu-Zhu Li, Ju-Jiao Kang, Jin-Tai Yu, Jian-Feng Feng, Wei Cheng, Guoqing Pan, Jia You, Linbo Wang
{"title":"Temporal trends of blood-based markers in various psychiatric disorders and their cross-sectional brain structure associations.","authors":"Yu-Jia Wang, Zairen Zhou, Yu-Zhu Li, Ju-Jiao Kang, Jin-Tai Yu, Jian-Feng Feng, Wei Cheng, Guoqing Pan, Jia You, Linbo Wang","doi":"10.1038/s43856-025-00957-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Understanding the temporal trends of blood-based biomarkers and their associations with brain structure is crucial for early detection and intervention in psychiatric disorders. This study aimed to explore these trends in the decade before and after diagnosis, along with the cross-sectional relationships with brain structures.</p><p><strong>Methods: </strong>Utilizing UK Biobank data, we conducted a nested case-control analysis of individuals aged 40-69 years diagnosed with anxiety (n = 27,216), bipolar disorder (n = 1325), depression (n = 36,570), or schizophrenia (n = 1478) within 10 years of baseline. We used multivariable linear regression to analyze temporal trends and brain structure associations for 31 blood cell counts, 28 biochemistry markers, and 168 serum metabolites.</p><p><strong>Results: </strong>Here we show that compared to controls, significant temporal divergence is observed in 39, 6, 55, and 12 blood-based markers for anxiety, bipolar disorder, depression, and schizophrenia, respectively. Common biomarkers like cystatin C, red blood cells, hemoglobin, hematocrit, and total bilirubin are identified. Biomarkers cluster into groups with either linear or non-linear trends. Among the linearly changing biomarkers, some have a widening difference from controls while others have a narrowing one. For example, in the case of depression, HDL-TG demonstrates an increasing disparity over time, while cholesterol exhibits a decreasing trend. Non-linear clusters often show reversals around diagnosis, indicating potential treatment effects. Differential associations are found between biomarkers and brain regions, including the orbitofrontal cortex, hippocampus, and accumbens.</p><p><strong>Conclusions: </strong>This study reveals the temporal trends of blood-based biomarkers in psychiatric disorders and their correlations with brain structure, aiding early detection and potentially enhancing clinical outcomes.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"239"},"PeriodicalIF":5.4000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12179275/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-025-00957-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Understanding the temporal trends of blood-based biomarkers and their associations with brain structure is crucial for early detection and intervention in psychiatric disorders. This study aimed to explore these trends in the decade before and after diagnosis, along with the cross-sectional relationships with brain structures.

Methods: Utilizing UK Biobank data, we conducted a nested case-control analysis of individuals aged 40-69 years diagnosed with anxiety (n = 27,216), bipolar disorder (n = 1325), depression (n = 36,570), or schizophrenia (n = 1478) within 10 years of baseline. We used multivariable linear regression to analyze temporal trends and brain structure associations for 31 blood cell counts, 28 biochemistry markers, and 168 serum metabolites.

Results: Here we show that compared to controls, significant temporal divergence is observed in 39, 6, 55, and 12 blood-based markers for anxiety, bipolar disorder, depression, and schizophrenia, respectively. Common biomarkers like cystatin C, red blood cells, hemoglobin, hematocrit, and total bilirubin are identified. Biomarkers cluster into groups with either linear or non-linear trends. Among the linearly changing biomarkers, some have a widening difference from controls while others have a narrowing one. For example, in the case of depression, HDL-TG demonstrates an increasing disparity over time, while cholesterol exhibits a decreasing trend. Non-linear clusters often show reversals around diagnosis, indicating potential treatment effects. Differential associations are found between biomarkers and brain regions, including the orbitofrontal cortex, hippocampus, and accumbens.

Conclusions: This study reveals the temporal trends of blood-based biomarkers in psychiatric disorders and their correlations with brain structure, aiding early detection and potentially enhancing clinical outcomes.

各种精神疾病的血液标志物的时间趋势及其横断面脑结构关联。
背景:了解基于血液的生物标志物的时间趋势及其与大脑结构的关联对于精神疾病的早期发现和干预至关重要。本研究旨在探索诊断前后十年的这些趋势,以及与大脑结构的横断面关系。方法:利用英国生物银行(UK Biobank)的数据,我们对40-69岁的患者进行了巢式病例对照分析,这些患者在基线10年内被诊断为焦虑症(n = 27,216)、双相情感障碍(n = 1325)、抑郁症(n = 36,570)或精神分裂症(n = 1478)。我们使用多变量线性回归分析了31种血细胞计数、28种生化标志物和168种血清代谢物的时间趋势和脑结构相关性。结果:与对照组相比,在39、6、55和12个基于血液的焦虑、双相情感障碍、抑郁和精神分裂症标志物上分别观察到显著的时间差异。常见的生物标志物,如胱抑素C、红细胞、血红蛋白、红细胞压积和总胆红素。生物标记物以线性或非线性趋势聚类。在线性变化的生物标志物中,一些与对照组的差异越来越大,而另一些则越来越小。例如,在抑郁症的情况下,HDL-TG随着时间的推移呈现出越来越大的差异,而胆固醇呈现出下降的趋势。非线性聚类通常在诊断前后出现逆转,表明潜在的治疗效果。在生物标志物和大脑区域之间发现了不同的关联,包括眶额皮质、海马体和伏隔核。结论:该研究揭示了基于血液的生物标志物在精神疾病中的时间趋势及其与大脑结构的相关性,有助于早期发现并可能提高临床结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信