{"title":"Maximizing bacterial survival: integrating sense-and-respond and bet-hedging mechanisms.","authors":"Lillian C Lowrey, Nicole C Gadda, Rita Tamayo","doi":"10.1016/j.tim.2025.05.010","DOIUrl":null,"url":null,"abstract":"<p><p>Two-component systems allow bacteria to respond to specific environmental signals with defined adaptive phenotypic changes, a process that requires time and may be inadequate for contending with rapidly changing environments. In contrast, phase variation generates baseline levels of phenotypic heterogeneity that helps to ensure survival of the population as a whole. This strategy may be better suited to confront abrupt environmental changes but may produce transiently less-fit subpopulations. Many bacteria have integrated phase variation and two-component signaling - how combining these stochastic and deterministic mechanisms affects bacterial fitness is unclear. Here, we identify three distinct schemes for integration of phase variation and two-component signaling. Using well-characterized examples, we speculate the circumstances in which each integration scheme confers a fitness advantage.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tim.2025.05.010","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Two-component systems allow bacteria to respond to specific environmental signals with defined adaptive phenotypic changes, a process that requires time and may be inadequate for contending with rapidly changing environments. In contrast, phase variation generates baseline levels of phenotypic heterogeneity that helps to ensure survival of the population as a whole. This strategy may be better suited to confront abrupt environmental changes but may produce transiently less-fit subpopulations. Many bacteria have integrated phase variation and two-component signaling - how combining these stochastic and deterministic mechanisms affects bacterial fitness is unclear. Here, we identify three distinct schemes for integration of phase variation and two-component signaling. Using well-characterized examples, we speculate the circumstances in which each integration scheme confers a fitness advantage.
期刊介绍:
Trends in Microbiology serves as a comprehensive, multidisciplinary forum for discussing various aspects of microbiology, spanning cell biology, immunology, genetics, evolution, virology, bacteriology, protozoology, and mycology. In the rapidly evolving field of microbiology, technological advancements, especially in genome sequencing, impact prokaryote biology from pathogens to extremophiles, influencing developments in drugs, vaccines, and industrial enzyme research.