Limeng Dong, Ting Huang, Shuo Han, Xiaowen Han, Junliang Yin, Lu Hou, Yujiao Liu
{"title":"Comprehensive Analysis of Faba Bean AP2/ERF Genes Suggests Potential Roles of VfAP2-1 and VfERF-99 in Abiotic and Biotic Stress Responses.","authors":"Limeng Dong, Ting Huang, Shuo Han, Xiaowen Han, Junliang Yin, Lu Hou, Yujiao Liu","doi":"10.1111/ppl.70356","DOIUrl":null,"url":null,"abstract":"<p><p>The AP2/ERFs not only participate in regulating signal networks, but they also play important roles in the process of plant growth and stress response. However, systematic research of AP2/ERF in Vicia faba is lacking. In this study, VfAP2/ERF was systematically identified and their characteristics were comprehensively analyzed. In total, 145 VfAP2/ERFs were identified, which were unevenly distributed across six chromosomes, and according to phylogenetic relationships, VfAP2/ERFs could be classified into five subgroups. Cis-elements analysis showed that VfAP2/ERF promoters harbored numerous elements functionally relating to light response, plant hormone, abiotic stress response, and plant growth and development response. Expression profiling analysis indicated that VfAP2/ERFs were broadly expressed during growth and development, and were responsive to drought and salt stresses. RT-qPCR revealed that six VfAP2/ERF genes were upregulated under drought and salt stress. Inoculation assay showed that VfAP2-1 and VfERF-99 could enhance resistance to pathogens. Further research shows that VfAP2-1 and VfERF-99 positively influence ROS homeostasis, resulting in the accumulation of H<sub>2</sub>O<sub>2</sub> and O<sub>2</sub> <sup>-</sup> under abiotic and biotic stresses, which inhibited the colonization of pathogens. Additionally, VfAP2-1 and VfERF-99 could significantly increase the content of chlorophyll a, carotenoids, and total chlorophyll, suggesting their possible roles in promoting photosynthesis. This study comprehensively analyzed VfAP2/ERFs and preliminarily explored the function of VfAP2-1 and VfERF-99 in biotic/abiotic stresses and photosynthesis, which laid the foundation for deciphering their functional mechanisms.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 3","pages":"e70356"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70356","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The AP2/ERFs not only participate in regulating signal networks, but they also play important roles in the process of plant growth and stress response. However, systematic research of AP2/ERF in Vicia faba is lacking. In this study, VfAP2/ERF was systematically identified and their characteristics were comprehensively analyzed. In total, 145 VfAP2/ERFs were identified, which were unevenly distributed across six chromosomes, and according to phylogenetic relationships, VfAP2/ERFs could be classified into five subgroups. Cis-elements analysis showed that VfAP2/ERF promoters harbored numerous elements functionally relating to light response, plant hormone, abiotic stress response, and plant growth and development response. Expression profiling analysis indicated that VfAP2/ERFs were broadly expressed during growth and development, and were responsive to drought and salt stresses. RT-qPCR revealed that six VfAP2/ERF genes were upregulated under drought and salt stress. Inoculation assay showed that VfAP2-1 and VfERF-99 could enhance resistance to pathogens. Further research shows that VfAP2-1 and VfERF-99 positively influence ROS homeostasis, resulting in the accumulation of H2O2 and O2- under abiotic and biotic stresses, which inhibited the colonization of pathogens. Additionally, VfAP2-1 and VfERF-99 could significantly increase the content of chlorophyll a, carotenoids, and total chlorophyll, suggesting their possible roles in promoting photosynthesis. This study comprehensively analyzed VfAP2/ERFs and preliminarily explored the function of VfAP2-1 and VfERF-99 in biotic/abiotic stresses and photosynthesis, which laid the foundation for deciphering their functional mechanisms.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.