Wenjia Gao, Dan Liu, Qisong Wang, Yongping Zhao, Jinwei Sun
{"title":"AQMFB-DWT: A Preprocessing Technique for Removing Blink Artifacts Before Extracting Pain-evoked Potential EEG.","authors":"Wenjia Gao, Dan Liu, Qisong Wang, Yongping Zhao, Jinwei Sun","doi":"10.1007/s12264-025-01425-0","DOIUrl":null,"url":null,"abstract":"<p><p>The pain-evoked potential electroencephalogram (EEG) is an effective electrophysiological indicator for pain assessment, yet its extraction is challenging due to interference from background activity and involuntary blinks. Although existing blink artifact-removal methods show efficacy, they face limitations such as the need for reference signals, neglect of individual differences, and reliance on user input, hindering their practical application in clinical pain assessments. In this paper, we propose a novel framework applying adaptive quadrature mirror filter banks (AQMFB) with discrete wavelet transform (DWT) to remove blink artifacts in pain EEG. Unlike traditional DWT methods that apply fixed wavelets across subjects, our method adapts wavelet construction based on the characteristics of EEG. Experimental results demonstrate that AQMFB-DWT outperforms four leading methods in removing blink artifacts with minimal distortion of pain information, all within an acceptable processing time. This technique is a valuable preprocessing step for enhancing the extraction of pain-evoked potentials.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-025-01425-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The pain-evoked potential electroencephalogram (EEG) is an effective electrophysiological indicator for pain assessment, yet its extraction is challenging due to interference from background activity and involuntary blinks. Although existing blink artifact-removal methods show efficacy, they face limitations such as the need for reference signals, neglect of individual differences, and reliance on user input, hindering their practical application in clinical pain assessments. In this paper, we propose a novel framework applying adaptive quadrature mirror filter banks (AQMFB) with discrete wavelet transform (DWT) to remove blink artifacts in pain EEG. Unlike traditional DWT methods that apply fixed wavelets across subjects, our method adapts wavelet construction based on the characteristics of EEG. Experimental results demonstrate that AQMFB-DWT outperforms four leading methods in removing blink artifacts with minimal distortion of pain information, all within an acceptable processing time. This technique is a valuable preprocessing step for enhancing the extraction of pain-evoked potentials.
期刊介绍:
Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer.
NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.