Therapeutic potential of mesenchymal stem cell-derived extracellular vesicle in nonalcoholic fatty liver disease: a systematic review and meta-analysis of preclinical evidence.
Qiangqiang Dai, Di Zhu, Xiaoming Du, Hao Tan, Qiu Chen
{"title":"Therapeutic potential of mesenchymal stem cell-derived extracellular vesicle in nonalcoholic fatty liver disease: a systematic review and meta-analysis of preclinical evidence.","authors":"Qiangqiang Dai, Di Zhu, Xiaoming Du, Hao Tan, Qiu Chen","doi":"10.1186/s12944-025-02635-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Nonalcoholic fatty liver disease (NAFLD) is a global chronic health challenge, demanding the development of innovative therapeutic strategies. Mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) have emerged as a promising therapeutic approach for NAFLD; however, current evidence is limited to preclinical studies. This systematic review and meta-analysis assessed the therapeutic efficacy of MSC-EVs in rodent models of NAFLD and its progressive form, nonalcoholic steatohepatitis (NASH). By synthesizing preclinical data, we aim to establish a robust evidence base that can guide future clinical trials and optimize MSC-EV-based therapies.</p><p><strong>Methods: </strong>Comprehensive searches of the PubMed, Web of Science, Embase, CNKI, Wanfang, and VIP databases identified eligible animal studies. Methodological quality was assessed via the SYRCLE risk-of-bias tool. The meta-analyses were conducted following Cochrane Handbook guidelines via Stata 18.0.</p><p><strong>Results: </strong>MSC-EVs led to significant reductions in key metabolic parameters, including AST (SMD = -2.79, 95% CI [-3.64, -1.94], p< 0.01), ALT (SMD = -2.47, 95% CI [-3.44, -1.50], p < 0.01), TG (SMD = -1.86, 95% CI [-2.98, -0.73], P < 0.01), liver TG (SMD = -4.02, 95% CI [-5.84, -2.20], p < 0.01), TC (SMD = -2.52, 95% CI [-3.56, -1.48], p < 0.01), liver TC (SMD = -5.28, 95% CI [-7.71, -2.84], p < 0.01), NAS score(SMD = -3.56, 95% CI [-5.04, -2.09], P < 0.01), FBG SMD = -1.89, 95% CI [-2.94, -0.83], p < 0.01), and body weight (SMD = -2.34, 95% CI [-3.94, -0.74], p < 0.01). Additionally, MSC-EVs improved the level of inflammatory cytokines (TNF-α and IL-6) and oxidative stress markers (SOD and MDA). These effects surpass those reported in previous MSC-EVs studies targeting liver disease, particularly regarding unassessed lipid parameters and oxidative stress indicators.</p><p><strong>Conclusion: </strong>MSC-EVs show promising potential for treating NAFLD/NASH, with substantial evidence supporting their therapeutic and reparative effects. Our findings directly inform clinical trial design by identifying optimal parameters-such as human-derived EVs, treatment durations longer than four weeks, and exosome preparations obtained via differential ultracentrifugation-to maximize therapeutic efficacy. These findings warrant further clinical investigation to facilitate the clinical translation of MSC-EVs as a therapeutic option for NAFLD/NASH.</p>","PeriodicalId":18073,"journal":{"name":"Lipids in Health and Disease","volume":"24 1","pages":"217"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12180282/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lipids in Health and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12944-025-02635-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Nonalcoholic fatty liver disease (NAFLD) is a global chronic health challenge, demanding the development of innovative therapeutic strategies. Mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) have emerged as a promising therapeutic approach for NAFLD; however, current evidence is limited to preclinical studies. This systematic review and meta-analysis assessed the therapeutic efficacy of MSC-EVs in rodent models of NAFLD and its progressive form, nonalcoholic steatohepatitis (NASH). By synthesizing preclinical data, we aim to establish a robust evidence base that can guide future clinical trials and optimize MSC-EV-based therapies.
Methods: Comprehensive searches of the PubMed, Web of Science, Embase, CNKI, Wanfang, and VIP databases identified eligible animal studies. Methodological quality was assessed via the SYRCLE risk-of-bias tool. The meta-analyses were conducted following Cochrane Handbook guidelines via Stata 18.0.
Results: MSC-EVs led to significant reductions in key metabolic parameters, including AST (SMD = -2.79, 95% CI [-3.64, -1.94], p< 0.01), ALT (SMD = -2.47, 95% CI [-3.44, -1.50], p < 0.01), TG (SMD = -1.86, 95% CI [-2.98, -0.73], P < 0.01), liver TG (SMD = -4.02, 95% CI [-5.84, -2.20], p < 0.01), TC (SMD = -2.52, 95% CI [-3.56, -1.48], p < 0.01), liver TC (SMD = -5.28, 95% CI [-7.71, -2.84], p < 0.01), NAS score(SMD = -3.56, 95% CI [-5.04, -2.09], P < 0.01), FBG SMD = -1.89, 95% CI [-2.94, -0.83], p < 0.01), and body weight (SMD = -2.34, 95% CI [-3.94, -0.74], p < 0.01). Additionally, MSC-EVs improved the level of inflammatory cytokines (TNF-α and IL-6) and oxidative stress markers (SOD and MDA). These effects surpass those reported in previous MSC-EVs studies targeting liver disease, particularly regarding unassessed lipid parameters and oxidative stress indicators.
Conclusion: MSC-EVs show promising potential for treating NAFLD/NASH, with substantial evidence supporting their therapeutic and reparative effects. Our findings directly inform clinical trial design by identifying optimal parameters-such as human-derived EVs, treatment durations longer than four weeks, and exosome preparations obtained via differential ultracentrifugation-to maximize therapeutic efficacy. These findings warrant further clinical investigation to facilitate the clinical translation of MSC-EVs as a therapeutic option for NAFLD/NASH.
期刊介绍:
Lipids in Health and Disease is an open access, peer-reviewed, journal that publishes articles on all aspects of lipids: their biochemistry, pharmacology, toxicology, role in health and disease, and the synthesis of new lipid compounds.
Lipids in Health and Disease is aimed at all scientists, health professionals and physicians interested in the area of lipids. Lipids are defined here in their broadest sense, to include: cholesterol, essential fatty acids, saturated fatty acids, phospholipids, inositol lipids, second messenger lipids, enzymes and synthetic machinery that is involved in the metabolism of various lipids in the cells and tissues, and also various aspects of lipid transport, etc. In addition, the journal also publishes research that investigates and defines the role of lipids in various physiological processes, pathology and disease. In particular, the journal aims to bridge the gap between the bench and the clinic by publishing articles that are particularly relevant to human diseases and the role of lipids in the management of various diseases.