Anti-steatotic effect of Opuntia ficus-indica extracts rich in betalains and phenolics from fruit peel and pulp of different varieties in in vitro models.

IF 3.7 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Irene Besné-Eseverri, Jenifer Trepiana, Itziar Eseberri, Andrea Gómez-Maqueo, M Pilar Cano, Joao Tomé-Carneiro, Alberto Dávalos, María P Portillo
{"title":"Anti-steatotic effect of Opuntia ficus-indica extracts rich in betalains and phenolics from fruit peel and pulp of different varieties in in vitro models.","authors":"Irene Besné-Eseverri, Jenifer Trepiana, Itziar Eseberri, Andrea Gómez-Maqueo, M Pilar Cano, Joao Tomé-Carneiro, Alberto Dávalos, María P Portillo","doi":"10.1007/s13105-025-01097-4","DOIUrl":null,"url":null,"abstract":"<p><p>Opuntia ficus-indica exhibits antioxidant, anti-inflammatory and anti-hyperglycemic properties, making it a promising candidate for the prevention and treatment of metabolic dysfunction-associated fatty liver disease. However, its effects on triglyceride accumulation remain largely unexplored. The aim of the present study is to evaluate the anti-steatotic effect of peel and pulp extracts from different varieties of Opuntia ficus-indica fruits (Pelota, Colorada and Sanguinos) in hepatic murine in vitro models, using both AML12 hepatocytes and hepatic organoids. The pulp extracts of Pelota and Colorada varieties, as well as both peel and pulp extracts of Sanguinos, were effective in reducing palmitic acid-induced triglyceride accumulation in AML12 hepatocytes. The doses that caused the greatest triglyceride reduction were 50 µg/mL of the pulp of Pelota and 100 µg/mL for the other extracts. The potential mechanisms underlying these effects seem to be associated, at least in part, with the inhibition of fatty acid uptake and triglyceride assembly. The pulp extract of the Colorada variety was able to prevent triglyceride accumulation also in hepatic organoids, likely due to downregulation of fatty acid transporters. These findings underscore the value of employing diverse in vitro models (e.g., 2D, 3D) to investigate the potential effects of these extracts, and suggest that the pulp extract of the Colorada variety may be effective in preventing steatosis.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physiology and biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13105-025-01097-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Opuntia ficus-indica exhibits antioxidant, anti-inflammatory and anti-hyperglycemic properties, making it a promising candidate for the prevention and treatment of metabolic dysfunction-associated fatty liver disease. However, its effects on triglyceride accumulation remain largely unexplored. The aim of the present study is to evaluate the anti-steatotic effect of peel and pulp extracts from different varieties of Opuntia ficus-indica fruits (Pelota, Colorada and Sanguinos) in hepatic murine in vitro models, using both AML12 hepatocytes and hepatic organoids. The pulp extracts of Pelota and Colorada varieties, as well as both peel and pulp extracts of Sanguinos, were effective in reducing palmitic acid-induced triglyceride accumulation in AML12 hepatocytes. The doses that caused the greatest triglyceride reduction were 50 µg/mL of the pulp of Pelota and 100 µg/mL for the other extracts. The potential mechanisms underlying these effects seem to be associated, at least in part, with the inhibition of fatty acid uptake and triglyceride assembly. The pulp extract of the Colorada variety was able to prevent triglyceride accumulation also in hepatic organoids, likely due to downregulation of fatty acid transporters. These findings underscore the value of employing diverse in vitro models (e.g., 2D, 3D) to investigate the potential effects of these extracts, and suggest that the pulp extract of the Colorada variety may be effective in preventing steatosis.

不同品种无花果果皮和果肉中富含甜菜素和酚类物质提取物的体外抗脂肪变性作用。
无花果树具有抗氧化、抗炎和抗高血糖的特性,使其成为预防和治疗代谢功能障碍相关脂肪性肝病的有希望的候选者。然而,它对甘油三酯积累的影响在很大程度上仍未被探索。本研究的目的是利用AML12肝细胞和肝类器官,评估不同品种无花果果实(Pelota, Colorada和Sanguinos)的果皮和果肉提取物对肝小鼠的抗脂肪变性作用。Pelota和Colorada品种的果肉提取物以及Sanguinos的果皮和果肉提取物都能有效减少棕榈酸诱导的甘油三酯在AML12肝细胞中的积累。导致甘油三酯减少最多的剂量为50µg/mL的Pelota纸浆和100µg/mL的其他提取物。这些影响的潜在机制似乎与脂肪酸摄取和甘油三酯组装的抑制有关,至少部分有关。科罗拉多品种的果肉提取物也能够防止甘油三酯在肝类器官中的积累,可能是由于脂肪酸转运蛋白的下调。这些发现强调了采用多种体外模型(例如,2D, 3D)来研究这些提取物的潜在作用的价值,并表明科罗拉多品种的牙髓提取物可能有效预防脂肪变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of physiology and biochemistry
Journal of physiology and biochemistry 生物-生化与分子生物学
CiteScore
6.60
自引率
0.00%
发文量
86
审稿时长
6-12 weeks
期刊介绍: The Journal of Physiology and Biochemistry publishes original research articles and reviews describing relevant new observations on molecular, biochemical and cellular mechanisms involved in human physiology. All areas of the physiology are covered. Special emphasis is placed on the integration of those levels in the whole-organism. The Journal of Physiology and Biochemistry also welcomes articles on molecular nutrition and metabolism studies, and works related to the genomic or proteomic bases of the physiological functions. Descriptive manuscripts about physiological/biochemical processes or clinical manuscripts will not be considered. The journal will not accept manuscripts testing effects of animal or plant extracts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信