A novel non-invasive mRNA-lncRNA biomarker panel for accurate prediction of cervical squamous cell carcinoma and adenocarcinoma.

IF 3.7 2区 医学 Q1 OBSTETRICS & GYNECOLOGY
Journal of Gynecologic Oncology Pub Date : 2025-09-01 Epub Date: 2025-03-04 DOI:10.3802/jgo.2025.36.e81
Yixuan Cen, Mengyan Tu, Yanan Zhang, Yan Ren, Junfen Xu
{"title":"A novel non-invasive mRNA-lncRNA biomarker panel for accurate prediction of cervical squamous cell carcinoma and adenocarcinoma.","authors":"Yixuan Cen, Mengyan Tu, Yanan Zhang, Yan Ren, Junfen Xu","doi":"10.3802/jgo.2025.36.e81","DOIUrl":null,"url":null,"abstract":"<p><p>Squamous cell carcinoma (SCC) and adenocarcinoma (ADC) represent predominant histological subtypes of cervical cancer. To improve screening efficacy, we leveraged RNA sequencing data from 4 cervical SCC samples, 4 cervical ADC samples, and 8 normal cervix samples and conducted a comprehensive mRNA and long noncoding RNA (lncRNA) profiling analysis followed with a multi-phase study comprising 556 samples. Validating the RNA sequencing data in a clinical sample set comprising 45 normal cervix tissues, 45 SCC tissues, and 45 ADC tissues, we identified 9 mRNAs (SMC1B, OTX1, GRP, CELSR3, HOXC6, ITGB6, WDR62, SEPT3, and KLHL34) and 4 lncRNAs (FEZF1-AS1, LINC01305, LINC00857, and LINC00673) differentially expressed in both SCC and ADC samples. Utilizing quantitative reverse transcription polymerase chain reaction analysis and receiver operating characteristic (ROC) curve analysis in a training set (45 normal, 126 SCC, and 82 ADC tissues), we refined a novel mRNA-lncRNA-based panel (SMC1B/CELSR3/FEZF1-AS1/LINC01305). Employing logistic regression model and ROC analysis, this panel exhibited significant distinctions and promising area under the curve (AUC) values in both SCC (AUC=0.9520, p<0.0001) and ADC (AUC=0.9748, p<0.0001) tissues. Subsequent validation in an independent set (11 normal, 32 SCC, and 20 ADC tissues) demonstrated its diagnostic accuracy in both SCC (AUC=0.9659, p<0.0001) and ADC (AUC=0.9636, p<0.0001) patients. Notably, this tissue-based biomarker panel robustly discriminated precancerous lesion and cervical cancer patients from non-disease controls in a blood-based validation set (30 normal, 25 HSIL and 50 cervical cancer) with an AUC value of 0.9320. This study presents a non-invasive, efficient diagnostic panel for cervical cancer screening.</p>","PeriodicalId":15868,"journal":{"name":"Journal of Gynecologic Oncology","volume":" ","pages":"e81"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12426746/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Gynecologic Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3802/jgo.2025.36.e81","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Squamous cell carcinoma (SCC) and adenocarcinoma (ADC) represent predominant histological subtypes of cervical cancer. To improve screening efficacy, we leveraged RNA sequencing data from 4 cervical SCC samples, 4 cervical ADC samples, and 8 normal cervix samples and conducted a comprehensive mRNA and long noncoding RNA (lncRNA) profiling analysis followed with a multi-phase study comprising 556 samples. Validating the RNA sequencing data in a clinical sample set comprising 45 normal cervix tissues, 45 SCC tissues, and 45 ADC tissues, we identified 9 mRNAs (SMC1B, OTX1, GRP, CELSR3, HOXC6, ITGB6, WDR62, SEPT3, and KLHL34) and 4 lncRNAs (FEZF1-AS1, LINC01305, LINC00857, and LINC00673) differentially expressed in both SCC and ADC samples. Utilizing quantitative reverse transcription polymerase chain reaction analysis and receiver operating characteristic (ROC) curve analysis in a training set (45 normal, 126 SCC, and 82 ADC tissues), we refined a novel mRNA-lncRNA-based panel (SMC1B/CELSR3/FEZF1-AS1/LINC01305). Employing logistic regression model and ROC analysis, this panel exhibited significant distinctions and promising area under the curve (AUC) values in both SCC (AUC=0.9520, p<0.0001) and ADC (AUC=0.9748, p<0.0001) tissues. Subsequent validation in an independent set (11 normal, 32 SCC, and 20 ADC tissues) demonstrated its diagnostic accuracy in both SCC (AUC=0.9659, p<0.0001) and ADC (AUC=0.9636, p<0.0001) patients. Notably, this tissue-based biomarker panel robustly discriminated precancerous lesion and cervical cancer patients from non-disease controls in a blood-based validation set (30 normal, 25 HSIL and 50 cervical cancer) with an AUC value of 0.9320. This study presents a non-invasive, efficient diagnostic panel for cervical cancer screening.

一种新的非侵入性mRNA-lncRNA生物标志物面板,用于准确预测宫颈鳞状细胞癌和腺癌。
鳞状细胞癌(SCC)和腺癌(ADC)是宫颈癌的主要组织学亚型。为了提高筛查效果,我们利用4个宫颈SCC样本、4个宫颈ADC样本和8个正常宫颈样本的RNA测序数据,进行了全面的mRNA和长链非编码RNA (lncRNA)分析,随后进行了包括556个样本的多阶段研究。在45个正常宫颈组织、45个SCC组织和45个ADC组织的临床样本集中验证RNA测序数据,我们鉴定出9个mrna (SMC1B、OTX1、GRP、CELSR3、HOXC6、ITGB6、WDR62、SEPT3和KLHL34)和4个lncRNAs (FEZF1-AS1、LINC01305、LINC00857和LINC00673)在SCC和ADC样本中差异表达。利用定量逆转录聚合酶链反应分析和受试者工作特征(ROC)曲线分析,我们在训练集(45个正常组织,126个SCC组织和82个ADC组织)中完善了一个新的基于mrna - lncrna的检测组(SMC1B/CELSR3/FEZF1-AS1/LINC01305)。采用logistic回归模型和ROC分析,该小组在两种SCC中显示出显著差异和有希望的曲线下面积(AUC)值(AUC=0.9520, p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Gynecologic Oncology
Journal of Gynecologic Oncology ONCOLOGY-OBSTETRICS & GYNECOLOGY
CiteScore
6.00
自引率
2.60%
发文量
84
审稿时长
>12 weeks
期刊介绍: The Journal of Gynecologic Oncology (JGO) is an official publication of the Asian Society of Gynecologic Oncology. Abbreviated title is ''J Gynecol Oncol''. It was launched in 1990. The JGO''s aim is to publish the highest quality manuscripts dedicated to the advancement of care of the patients with gynecologic cancer. It is an international peer-reviewed periodical journal that is published bimonthly (January, March, May, July, September, and November). Supplement numbers are at times published. The journal publishes editorials, original and review articles, correspondence, book review, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信