Non-Gaussianity of neurotransmitters co-released from mammalian adrenal chromaffin cells.

IF 3.9 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-06-17 DOI:10.1007/s11571-025-10273-7
Ziheng Xu, Jingxiao Huo, Yanmei Kang, Changhe Wang
{"title":"Non-Gaussianity of neurotransmitters co-released from mammalian adrenal chromaffin cells.","authors":"Ziheng Xu, Jingxiao Huo, Yanmei Kang, Changhe Wang","doi":"10.1007/s11571-025-10273-7","DOIUrl":null,"url":null,"abstract":"<p><p>While synaptic currents in computational neuroscience are conventionally modeled as Gaussian processes, there tends to be theoretical assumption that non-Gaussian Lévy processes can better describe the stochastic nature of neurotransmitter release in real neurophysiological scenarios. To support this view, we conduct statistical inference with the recordings of the co-release currents of two neurotransmitters from mammalian adrenal chromaffin cells by two steps. First, both the deterministic part and the random part of the current time series are separated by local weighted regression based on the individual vesicle releases and the entire co-release process, respectively. By fitting the resultant deterministic parts in individual release by the double exponential function and the counterparts in the entire co-release process by the truncated Fourier series, the procedure of separation we adopt is validated. And then, the statistical analysis based on the quantile-quantile plot and the empirical characteristic function reveals that the distribution of the random parts dramatically deviates from Gaussian distribution but matches well with certain non-Gaussian alpha stable distribution. Thus, the present study provides significant evidence for the non-Gaussian nature about neurotransmitter release from biophysical experiment.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"92"},"PeriodicalIF":3.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12174024/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10273-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

While synaptic currents in computational neuroscience are conventionally modeled as Gaussian processes, there tends to be theoretical assumption that non-Gaussian Lévy processes can better describe the stochastic nature of neurotransmitter release in real neurophysiological scenarios. To support this view, we conduct statistical inference with the recordings of the co-release currents of two neurotransmitters from mammalian adrenal chromaffin cells by two steps. First, both the deterministic part and the random part of the current time series are separated by local weighted regression based on the individual vesicle releases and the entire co-release process, respectively. By fitting the resultant deterministic parts in individual release by the double exponential function and the counterparts in the entire co-release process by the truncated Fourier series, the procedure of separation we adopt is validated. And then, the statistical analysis based on the quantile-quantile plot and the empirical characteristic function reveals that the distribution of the random parts dramatically deviates from Gaussian distribution but matches well with certain non-Gaussian alpha stable distribution. Thus, the present study provides significant evidence for the non-Gaussian nature about neurotransmitter release from biophysical experiment.

哺乳动物肾上腺染色质细胞共释放神经递质的非高斯性。
虽然计算神经科学中的突触电流通常被建模为高斯过程,但有一种理论假设倾向于认为非高斯l郁闷过程可以更好地描述真实神经生理场景中神经递质释放的随机性。为了支持这一观点,我们对哺乳动物肾上腺染色质细胞的两种神经递质共释放电流的记录进行了统计推断。首先,分别基于单个囊泡释放和整个共释放过程,采用局部加权回归分离当前时间序列的确定性部分和随机部分;用双指数函数拟合单个释放过程的确定性部分,用截断傅立叶级数拟合整个共释放过程的确定性部分,验证了所采用的分离方法。然后,基于分位数-分位数图和经验特征函数的统计分析表明,随机部分的分布明显偏离高斯分布,但与一定的非高斯α稳定分布很好地匹配。因此,本研究为生物物理实验中神经递质释放的非高斯性提供了重要证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信