Non-parametric estimators of hazard ratios for comparing two survival curves.

IF 1.7 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2025-04-02 DOI:10.1093/biomtc/ujaf072
Mihai Giurcanu, Theodore Karrison
{"title":"Non-parametric estimators of hazard ratios for comparing two survival curves.","authors":"Mihai Giurcanu, Theodore Karrison","doi":"10.1093/biomtc/ujaf072","DOIUrl":null,"url":null,"abstract":"<p><p>We propose non-parametric estimators of the hazard ratio for comparing two survival curves using estimating equations defined in terms of group-specific cumulative hazard functions. We first describe the methods and their asymptotic properties in the case of a constant hazard ratio. We then extend the methods and the asymptotic results when the hazard ratio is time dependent and well approximated by a locally constant function. We propose a method to select the change points in the local hazard ratios. We extend the methods to stratified estimators and propose tests for heterogeneity of constant and time-dependent hazard ratios across strata. In a simulation study, we describe the finite sample properties of the proposed estimators and compare their performance with the Cox partial maximum likelihood estimator (MLE) in terms of efficiency and accuracy of coverage rates. An example is provided to illustrate an application of the proposed methods in practice.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf072","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose non-parametric estimators of the hazard ratio for comparing two survival curves using estimating equations defined in terms of group-specific cumulative hazard functions. We first describe the methods and their asymptotic properties in the case of a constant hazard ratio. We then extend the methods and the asymptotic results when the hazard ratio is time dependent and well approximated by a locally constant function. We propose a method to select the change points in the local hazard ratios. We extend the methods to stratified estimators and propose tests for heterogeneity of constant and time-dependent hazard ratios across strata. In a simulation study, we describe the finite sample properties of the proposed estimators and compare their performance with the Cox partial maximum likelihood estimator (MLE) in terms of efficiency and accuracy of coverage rates. An example is provided to illustrate an application of the proposed methods in practice.

比较两条生存曲线的风险比的非参数估计。
我们提出了比较两个生存曲线的风险比的非参数估计,使用根据群体特定累积风险函数定义的估计方程。我们首先描述了这些方法及其在风险比为常数情况下的渐近性质。然后,我们推广了这些方法,并得到了风险比随时间变化且由局部常数函数近似时的渐近结果。我们提出了一种选择局部风险比变化点的方法。我们将方法扩展到分层估计器,并提出了跨地层恒定和时间相关风险比异质性的检验。在模拟研究中,我们描述了所提出的估计器的有限样本特性,并在覆盖率的效率和准确性方面将其与Cox偏极大似然估计器(MLE)的性能进行了比较。最后以实例说明了所提方法在实际中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信