Watercress-derived glucosinolates as potential allosteric PTP1B inhibitors: a dual in silico and in vitro study on insulin signaling modulation.

IF 4.3 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Noha A Ahmed, Ahmed A Allam, Hassan A Rudayni, Fahad M Alshabrmi, Faris F Aba Alkhayl, Doaa A Abdelrheem, Al Mokhtar Lamsabhi, Sarah I Othman, Emadeldin M Kamel
{"title":"Watercress-derived glucosinolates as potential allosteric PTP1B inhibitors: a dual in silico and in vitro study on insulin signaling modulation.","authors":"Noha A Ahmed, Ahmed A Allam, Hassan A Rudayni, Fahad M Alshabrmi, Faris F Aba Alkhayl, Doaa A Abdelrheem, Al Mokhtar Lamsabhi, Sarah I Othman, Emadeldin M Kamel","doi":"10.1186/s13065-025-01544-9","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the inhibitory potential of four glucosinolates-glucoerucin, glucoiberin, gluconasturtiin, and glucotropaeolin-isolated from watercress (Nasturtium officinale) against Protein Tyrosine Phosphatase 1B (PTP1B), a key regulator of insulin signaling. Molecular docking, molecular dynamics (MD) simulations, and MM/PBSA free energy calculations identified glucoerucin (-17.18 ± 3.51 kcal/mol) and gluconasturtiin (-13.54 ± 1.79 kcal/mol) as the strongest binders, with stable interactions involving Phe280 and Phe196 through π-π stacking. Potential Energy Landscape (PEL) analysis further confirmed that these two compounds occupied the most stable low-energy conformational states, reinforcing their favorable binding to PTP1B. In vitro enzyme inhibition assays provided experimental validation that glucoerucin (IC₅₀ = 6.07 ± 0.69 µM) and gluconasturtiin (IC₅₀ = 7.65 ± 0.45 µM) demonstrated the strongest inhibitory effects, comparable to ursolic acid (IC₅₀ = 7.11 ± 0.95 µM). Enzyme kinetics revealed a non-competitive inhibition mechanism, with K<sub>i</sub> values of 6.29 µM and 7.02 µM, suggesting allosteric regulation. ADMET analysis indicated good solubility and metabolic stability but limited oral bioavailability due to low gastrointestinal (GI) absorption. These findings highlight glucoerucin and gluconasturtiin as promising natural PTP1B inhibitors, warranting further optimization for therapeutic applications in type 2 diabetes management.</p>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":"169"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12180191/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1186/s13065-025-01544-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the inhibitory potential of four glucosinolates-glucoerucin, glucoiberin, gluconasturtiin, and glucotropaeolin-isolated from watercress (Nasturtium officinale) against Protein Tyrosine Phosphatase 1B (PTP1B), a key regulator of insulin signaling. Molecular docking, molecular dynamics (MD) simulations, and MM/PBSA free energy calculations identified glucoerucin (-17.18 ± 3.51 kcal/mol) and gluconasturtiin (-13.54 ± 1.79 kcal/mol) as the strongest binders, with stable interactions involving Phe280 and Phe196 through π-π stacking. Potential Energy Landscape (PEL) analysis further confirmed that these two compounds occupied the most stable low-energy conformational states, reinforcing their favorable binding to PTP1B. In vitro enzyme inhibition assays provided experimental validation that glucoerucin (IC₅₀ = 6.07 ± 0.69 µM) and gluconasturtiin (IC₅₀ = 7.65 ± 0.45 µM) demonstrated the strongest inhibitory effects, comparable to ursolic acid (IC₅₀ = 7.11 ± 0.95 µM). Enzyme kinetics revealed a non-competitive inhibition mechanism, with Ki values of 6.29 µM and 7.02 µM, suggesting allosteric regulation. ADMET analysis indicated good solubility and metabolic stability but limited oral bioavailability due to low gastrointestinal (GI) absorption. These findings highlight glucoerucin and gluconasturtiin as promising natural PTP1B inhibitors, warranting further optimization for therapeutic applications in type 2 diabetes management.

豆瓣菜衍生的硫代葡萄糖苷作为潜在的变抗PTP1B抑制剂:胰岛素信号调节的双重体内和体外研究
本研究研究了从豆瓣菜(旱金莲)中分离的四种葡萄糖苷酸——葡萄糖苷、葡萄糖苷、糖凝乳素和葡萄糖苷——对胰岛素信号的关键调节因子蛋白酪氨酸磷酸酶1B (PTP1B)的抑制潜力。分子对接、分子动力学(MD)模拟和MM/PBSA自由能计算结果表明,葡萄糖苷(-17.18±3.51 kcal/mol)和糖conasturtiin(-13.54±1.79 kcal/mol)是最强的结合剂,并通过π-π堆叠与Phe280和Phe196稳定相互作用。势能景观(PEL)分析进一步证实了这两种化合物具有最稳定的低能构象状态,加强了它们与PTP1B的有利结合。体外酶抑制试验提供了实验验证,葡糖苷(IC₅₀= 6.07±0.69µM)和葡糖苷(IC₅₀= 7.65±0.45µM)表现出最强的抑制效果,与熊果酸(IC₅₀= 7.11±0.95µM)相当。酶动力学显示非竞争性抑制机制,Ki值分别为6.29µM和7.02µM,显示变构调节。ADMET分析显示其具有良好的溶解性和代谢稳定性,但由于胃肠道吸收低,口服生物利用度有限。这些发现强调了葡萄糖糖蛋白和糖凝血脲素是很有前途的天然PTP1B抑制剂,需要进一步优化在2型糖尿病治疗中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Chemistry
BMC Chemistry Chemistry-General Chemistry
CiteScore
5.30
自引率
2.20%
发文量
92
审稿时长
27 weeks
期刊介绍: BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family. Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信