Development of a novel multi-epitope vaccine against Ureaplasma urealyticum infection through reverse vaccinology approach.

IF 3.8 2区 化学 Q2 CHEMISTRY, APPLIED
Linglan Xu, Nan Xie, Yiqin Liu, Hongmei Tang, Jinjiang He, Zhen He, Kang Zheng, Ranhui Li
{"title":"Development of a novel multi-epitope vaccine against Ureaplasma urealyticum infection through reverse vaccinology approach.","authors":"Linglan Xu, Nan Xie, Yiqin Liu, Hongmei Tang, Jinjiang He, Zhen He, Kang Zheng, Ranhui Li","doi":"10.1007/s11030-025-11234-2","DOIUrl":null,"url":null,"abstract":"<p><p>Ureaplasma urealyticum (U. urealyticum) is a sexually transmitted pathogen often causing urogenital tract disorders. The growing challenge of multidrug-resistant strains poses a significant risk for the treatment of U. urealyticum infections. To date, no licensed vaccines are available, and previous attempts to create secure and efficient prophylaxis have been failed. Recent studies have adopted an immunoinformatic strategy based on reverse vaccinology to detect antigenic proteins which are appropriate for the creation of a multi-epitope vaccine. The multi-epitope subunit vaccine, incorporating eleven T-cell and seven B-cell epitopes along with the adjuvant, exhibited strong antigenicity and did not induce allergic responses. Moreover, molecular docking as well as dynamic simulations were utilized to investigate the interaction within the vaccine-adjuvant complex. The prospective effectiveness of the vaccine was verified via immune simulation experiments. Therefore, the vaccine developed in this study represents an effective multi-epitope solution for immunization against U. urealyticum, waiting for further experimental analysis.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11234-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Ureaplasma urealyticum (U. urealyticum) is a sexually transmitted pathogen often causing urogenital tract disorders. The growing challenge of multidrug-resistant strains poses a significant risk for the treatment of U. urealyticum infections. To date, no licensed vaccines are available, and previous attempts to create secure and efficient prophylaxis have been failed. Recent studies have adopted an immunoinformatic strategy based on reverse vaccinology to detect antigenic proteins which are appropriate for the creation of a multi-epitope vaccine. The multi-epitope subunit vaccine, incorporating eleven T-cell and seven B-cell epitopes along with the adjuvant, exhibited strong antigenicity and did not induce allergic responses. Moreover, molecular docking as well as dynamic simulations were utilized to investigate the interaction within the vaccine-adjuvant complex. The prospective effectiveness of the vaccine was verified via immune simulation experiments. Therefore, the vaccine developed in this study represents an effective multi-epitope solution for immunization against U. urealyticum, waiting for further experimental analysis.

利用反向疫苗学方法研制抗解脲支原体感染的新型多表位疫苗。
解脲支原体(U. unrealyticum)是一种性传播病原体,常引起泌尿生殖道疾病。多药耐药菌株的挑战日益严峻,对解脲杆菌感染的治疗构成了重大风险。迄今为止,没有获得许可的疫苗,以前建立安全和有效预防方法的尝试都失败了。最近的研究采用了基于反向疫苗学的免疫信息学策略来检测适合创建多表位疫苗的抗原蛋白。该多表位亚单位疫苗包含11个t细胞和7个b细胞表位以及佐剂,表现出很强的抗原性,不会引起过敏反应。此外,利用分子对接和动态模拟来研究疫苗-佐剂复合物内部的相互作用。通过免疫模拟实验验证了该疫苗的预期有效性。因此,本研究开发的疫苗代表了一种有效的多表位解脲菌免疫方案,有待进一步的实验分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信