Remote biofilm dislodgment using focused acoustic vortex.

IF 8.7 1区 化学 Q1 ACOUSTICS
Chih-Hsien Li, Wei-Hao Chao, Ping-Ching Wu, Ching-Hsiang Fan
{"title":"Remote biofilm dislodgment using focused acoustic vortex.","authors":"Chih-Hsien Li, Wei-Hao Chao, Ping-Ching Wu, Ching-Hsiang Fan","doi":"10.1016/j.ultsonch.2025.107423","DOIUrl":null,"url":null,"abstract":"<p><p>Biofilms constitute a major challenge in treating implant-associated and chronic infections due to their structural resilience and drug resistance, particularly as implant demand rises due to aging populations. Conventional methods are often invasive, complex, and costly, while focused ultrasound (FUS) poses risks related to biocompatibility and tissue damage. Distinguished by its helical phase structure and rotational energy distribution, focused acoustic vortex (FAV) theoretically generates stronger rotational forces and acoustic streaming than FUS under identical acoustic conditions. This study investigates the feasibility of FAV technique for biofilm removal. Biofilms in vitro model were established using Escherichia coli, and a 2-MHz custom-built ultrasound transducer was employed to generate either FAV or FUS. Results indicated that FAV activation generated a centripetal vortical flow with rapid rotation, which was adjustable via acoustic pressure and duty cycle. Conversely, FUS generated solely outward acoustic streaming, exhibiting a flow velocity 43.6 % lower than that of FAV. At 1.75 MPa, implementing a 10 % duty cycle and a 180 s treatment, FAV removed 97 % of the biofilm, whereas FUS removed only 7 %. To achieve a comparable removal rate (95.8 %), FUS required 4 MPa for 10 minutes. Streaming velocity (R<sup>2</sup> = 0.99) exhibited a strong correlation with biofilm removal, while inertial cavitation (R<sup>2</sup> = 0.19) exhibited a weak correlation; thus, the former was identified as the primary contributing mechanism. Importantly, FAV treatment resulted in minimal thermal elevation (<5 °C) and no significant reduction in cell viability, demonstrating its biosafety under the applied acoustic parameters. Synergistic tests with antibiotics further suppressed biofilm regrowth for up to 72 h, reducing bacterial concentration by 91 %. Future work will focus on in vivo biofilm models and assessing the safety and efficacy of combined treatments to advance clinical applications.</p>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":" ","pages":"107423"},"PeriodicalIF":8.7000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ultsonch.2025.107423","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Biofilms constitute a major challenge in treating implant-associated and chronic infections due to their structural resilience and drug resistance, particularly as implant demand rises due to aging populations. Conventional methods are often invasive, complex, and costly, while focused ultrasound (FUS) poses risks related to biocompatibility and tissue damage. Distinguished by its helical phase structure and rotational energy distribution, focused acoustic vortex (FAV) theoretically generates stronger rotational forces and acoustic streaming than FUS under identical acoustic conditions. This study investigates the feasibility of FAV technique for biofilm removal. Biofilms in vitro model were established using Escherichia coli, and a 2-MHz custom-built ultrasound transducer was employed to generate either FAV or FUS. Results indicated that FAV activation generated a centripetal vortical flow with rapid rotation, which was adjustable via acoustic pressure and duty cycle. Conversely, FUS generated solely outward acoustic streaming, exhibiting a flow velocity 43.6 % lower than that of FAV. At 1.75 MPa, implementing a 10 % duty cycle and a 180 s treatment, FAV removed 97 % of the biofilm, whereas FUS removed only 7 %. To achieve a comparable removal rate (95.8 %), FUS required 4 MPa for 10 minutes. Streaming velocity (R2 = 0.99) exhibited a strong correlation with biofilm removal, while inertial cavitation (R2 = 0.19) exhibited a weak correlation; thus, the former was identified as the primary contributing mechanism. Importantly, FAV treatment resulted in minimal thermal elevation (<5 °C) and no significant reduction in cell viability, demonstrating its biosafety under the applied acoustic parameters. Synergistic tests with antibiotics further suppressed biofilm regrowth for up to 72 h, reducing bacterial concentration by 91 %. Future work will focus on in vivo biofilm models and assessing the safety and efficacy of combined treatments to advance clinical applications.

聚焦声涡的生物膜远程去除。
由于生物膜的结构弹性和耐药性,特别是在人口老龄化导致种植体需求上升的情况下,生物膜对治疗种植体相关感染和慢性感染构成了重大挑战。传统的方法通常是侵入性的、复杂的和昂贵的,而聚焦超声(FUS)带来了与生物相容性和组织损伤相关的风险。聚焦声涡流(FAV)具有螺旋相结构和旋转能量分布的特点,在相同的声学条件下,理论上比聚焦声涡流产生更强的旋转力和声流。本研究探讨了FAV技术去除生物膜的可行性。利用大肠杆菌建立体外生物膜模型,利用特制的2 mhz超声换能器产生FAV或FUS。结果表明,FAV激活产生了快速旋转的向心涡旋流,该涡旋流可通过声压和占空比调节。相反,FUS只产生向外的声流,其流速比FAV低43.6%。在1.75 MPa, 10%占空比和180 s处理下,FAV去除97%的生物膜,而FUS仅去除7%。为了达到类似的去除率(95.8%),FUS需要4 MPa,持续10分钟。流速(R2 = 0.99)与生物膜去除有较强的相关性,惯性空化(R2 = 0.19)与生物膜去除有较弱的相关性;因此,前者被确定为主要的促成机制。重要的是,FAV处理导致最小的热升高(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ultrasonics Sonochemistry
Ultrasonics Sonochemistry 化学-化学综合
CiteScore
15.80
自引率
11.90%
发文量
361
审稿时长
59 days
期刊介绍: Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels. Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信