Phytophthora Disrupts Plant Immunity by Manipulating Nitric Oxide Homeostasis Through GSNOR Inhibition.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tingting Li, Jing Kang, Haizhu Zhang, Lina Wang, Minghui Lu, Lin Cai, Jianming Li, Matthieu H A J Joosten, Yu Du
{"title":"Phytophthora Disrupts Plant Immunity by Manipulating Nitric Oxide Homeostasis Through GSNOR Inhibition.","authors":"Tingting Li, Jing Kang, Haizhu Zhang, Lina Wang, Minghui Lu, Lin Cai, Jianming Li, Matthieu H A J Joosten, Yu Du","doi":"10.1002/advs.202503633","DOIUrl":null,"url":null,"abstract":"<p><p>Nitric oxide (NO), a pivotal redox signaling molecule, coordinates plant development and immune responses through S-nitrosylation-mediated protein modification. While NO-dependent S-nitrosylation fine-tunes immune responses, whether pathogens hijack this process to subvert plant immunity remains unclear. Here it is shown that S-nitrosoglutathione reductase (GSNOR), which maintains NO homeostasis by degrading S-nitrosoglutathione (GSNO), positively regulates tomato resistance to Phytophthora capsici. Active-site mutations in GSNOR abolished its function in plant defense. Remarkably, GSNOR is manipulated by PcRD18, which is an RxLR effector of P. capsici that is involved in virulence of this oomycete pathogen. PcRD18 elevates the cellular NO content and S-nitrosylation levels by dually inhibiting GSNOR activity and promoting its autophagy-mediated degradation via enhanced ATG8c interaction. Structure analysis reveals critical PcRD18-GSNOR interaction interfaces and mutations in these sites of PcRD18 abolish its ability to interact with GSNOR, thereby blocking the effector's ability to elevate NO levels, suppress the reactive oxygen species (ROS) burst, and enhance virulence. GSNOR mutations disrupting PcRD18 binding produced a mutant form of GSNOR enhancing Phytophthora resistance. These findings unveil a pathogen strategy to subvert NO homeostasis through effector-mediated hijacking of GSNOR and suggest that engineering the host-pathogen interface to disrupt the interaction between GSNOR and PcRD18 will enhance crop disease resistance.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e03633"},"PeriodicalIF":14.3000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202503633","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nitric oxide (NO), a pivotal redox signaling molecule, coordinates plant development and immune responses through S-nitrosylation-mediated protein modification. While NO-dependent S-nitrosylation fine-tunes immune responses, whether pathogens hijack this process to subvert plant immunity remains unclear. Here it is shown that S-nitrosoglutathione reductase (GSNOR), which maintains NO homeostasis by degrading S-nitrosoglutathione (GSNO), positively regulates tomato resistance to Phytophthora capsici. Active-site mutations in GSNOR abolished its function in plant defense. Remarkably, GSNOR is manipulated by PcRD18, which is an RxLR effector of P. capsici that is involved in virulence of this oomycete pathogen. PcRD18 elevates the cellular NO content and S-nitrosylation levels by dually inhibiting GSNOR activity and promoting its autophagy-mediated degradation via enhanced ATG8c interaction. Structure analysis reveals critical PcRD18-GSNOR interaction interfaces and mutations in these sites of PcRD18 abolish its ability to interact with GSNOR, thereby blocking the effector's ability to elevate NO levels, suppress the reactive oxygen species (ROS) burst, and enhance virulence. GSNOR mutations disrupting PcRD18 binding produced a mutant form of GSNOR enhancing Phytophthora resistance. These findings unveil a pathogen strategy to subvert NO homeostasis through effector-mediated hijacking of GSNOR and suggest that engineering the host-pathogen interface to disrupt the interaction between GSNOR and PcRD18 will enhance crop disease resistance.

疫霉通过GSNOR抑制操纵一氧化氮稳态破坏植物免疫。
一氧化氮(NO)是一种重要的氧化还原信号分子,通过s -亚硝基化介导的蛋白质修饰来协调植物的发育和免疫反应。虽然no依赖性s -亚硝基化对免疫反应进行微调,但病原体是否会劫持这一过程来破坏植物免疫系统仍不清楚。结果表明,s -亚硝基谷胱甘肽还原酶(S-nitrosoglutathione reductase, GSNOR)通过降解s -亚硝基谷胱甘肽(S-nitrosoglutathione, GSNO)维持NO稳态,对番茄抗辣椒疫霉具有正向调控作用。GSNOR的活性位点突变取消了其在植物防御中的功能。值得注意的是,GSNOR是由PcRD18操纵的,PcRD18是辣椒霉的RxLR效应物,参与了这种卵菌病原体的毒力。PcRD18通过双重抑制GSNOR活性并通过增强ATG8c相互作用促进其自噬介导的降解,从而提高细胞NO含量和s -亚硝基化水平。结构分析揭示了关键的PcRD18-GSNOR相互作用界面和PcRD18这些位点的突变使其丧失了与GSNOR相互作用的能力,从而阻断了效应物提高NO水平、抑制活性氧(ROS)爆发和增强毒力的能力。破坏PcRD18结合的GSNOR突变产生了增强疫霉菌抗性的GSNOR突变体。这些发现揭示了一种病原体通过效应介导的劫持GSNOR来破坏NO稳态的策略,并表明通过设计宿主-病原体界面来破坏GSNOR和PcRD18之间的相互作用将增强作物的抗病性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信