NPR1 Promotes Lipid Droplet Lipolysis to Enhance Mitochondrial Oxidative Phosphorylation and Fuel Gastric Cancer Metastasis

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Huafeng Fu, Jie Zhang, Hengxing Chen, Haobin Hou, Huanjie Chen, Rongman Xie, Yanlei Chen, Jian Zhang, Dehua Liu, Leping Yan, Rui L. Reis, Joaquim M. Oliveira, Yulong He, Li Zhong, Qinbo Cai, Dongjie Yang
{"title":"NPR1 Promotes Lipid Droplet Lipolysis to Enhance Mitochondrial Oxidative Phosphorylation and Fuel Gastric Cancer Metastasis","authors":"Huafeng Fu,&nbsp;Jie Zhang,&nbsp;Hengxing Chen,&nbsp;Haobin Hou,&nbsp;Huanjie Chen,&nbsp;Rongman Xie,&nbsp;Yanlei Chen,&nbsp;Jian Zhang,&nbsp;Dehua Liu,&nbsp;Leping Yan,&nbsp;Rui L. Reis,&nbsp;Joaquim M. Oliveira,&nbsp;Yulong He,&nbsp;Li Zhong,&nbsp;Qinbo Cai,&nbsp;Dongjie Yang","doi":"10.1002/advs.202503233","DOIUrl":null,"url":null,"abstract":"<p>Metabolic reprogramming driven by oncogenes plays a critical role in promoting and sustaining multiple steps of gastric cancer metastasis. However, the key metabolic driver of metastasis that can lead to the development of targeted therapies for preventing and treating metastatic gastric cancer remains elusive. Here, it is identified that the transmembrane guanylate cyclase, natriuretic peptide receptor 1 (NPR1), promoted gastric cancer lymph node metastasis by activating lipid droplet lipolysis and enhancing mitochondrial oxidative phosphorylation (OXPHOS). Clinical analysis reveals that elevated NPR1 protein level is correlated with increased lymph node metastasis and shorter patient survival. Functionally, NPR1 induced lipolysis of stored lipid droplets, releasing bioavailable fatty acids that are imported into mitochondria to upregulate OXPHOS, thus fueling the energy required for the metastasis of gastric cancer cells. Mechanistically, NPR1 activates protein kinase cGMP-dependent 1 (PRKG1 or PKG), which directly bound to and activated hormone-sensitive lipase (HSL) by phosphorylation at residues Ser<sup>855</sup> and Ser<sup>951</sup>, thereby increasing lipolysis. Furthermore, targeted delivery of NPR1 siRNA using engineered exosome mimetics effectively suppressed gastric cancer metastasis. Taken together, these findings elucidate the NPR1-driven metabolic mechanism underlying gastric cancer metastasis and suggest NPR1 as a promising therapeutic target for patients with metastatic gastric cancer.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 37","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202503233","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202503233","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolic reprogramming driven by oncogenes plays a critical role in promoting and sustaining multiple steps of gastric cancer metastasis. However, the key metabolic driver of metastasis that can lead to the development of targeted therapies for preventing and treating metastatic gastric cancer remains elusive. Here, it is identified that the transmembrane guanylate cyclase, natriuretic peptide receptor 1 (NPR1), promoted gastric cancer lymph node metastasis by activating lipid droplet lipolysis and enhancing mitochondrial oxidative phosphorylation (OXPHOS). Clinical analysis reveals that elevated NPR1 protein level is correlated with increased lymph node metastasis and shorter patient survival. Functionally, NPR1 induced lipolysis of stored lipid droplets, releasing bioavailable fatty acids that are imported into mitochondria to upregulate OXPHOS, thus fueling the energy required for the metastasis of gastric cancer cells. Mechanistically, NPR1 activates protein kinase cGMP-dependent 1 (PRKG1 or PKG), which directly bound to and activated hormone-sensitive lipase (HSL) by phosphorylation at residues Ser855 and Ser951, thereby increasing lipolysis. Furthermore, targeted delivery of NPR1 siRNA using engineered exosome mimetics effectively suppressed gastric cancer metastasis. Taken together, these findings elucidate the NPR1-driven metabolic mechanism underlying gastric cancer metastasis and suggest NPR1 as a promising therapeutic target for patients with metastatic gastric cancer.

Abstract Image

NPR1促进脂滴脂解促进线粒体氧化磷酸化和促进胃癌转移。
由癌基因驱动的代谢重编程在促进和维持胃癌转移的多个步骤中起着关键作用。然而,转移的关键代谢驱动因素可能导致预防和治疗转移性胃癌的靶向治疗的发展仍然难以捉摸。本研究发现,跨膜鸟苷酸环化酶利钠肽受体1 (NPR1)通过激活脂滴脂解和增强线粒体氧化磷酸化(OXPHOS)促进胃癌淋巴结转移。临床分析显示,NPR1蛋白水平升高与淋巴结转移增加、患者生存期缩短相关。功能上,NPR1诱导储存的脂滴脂解,释放生物可利用的脂肪酸,这些脂肪酸被导入线粒体,上调OXPHOS,从而为胃癌细胞转移提供所需的能量。从机制上讲,NPR1激活cgmp依赖性蛋白激酶1 (PRKG1或PKG),通过磷酸化Ser855和Ser951残基直接结合并激活激素敏感脂肪酶(HSL),从而增加脂肪分解。此外,利用工程外泌体模拟物靶向递送NPR1 siRNA可有效抑制胃癌转移。综上所述,这些发现阐明了NPR1驱动的胃癌转移代谢机制,并提示NPR1可能是转移性胃癌患者的一个有希望的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信