Sameen Yousaf , Bahareh Amirloo , Harmesh S. Aojula , David J. Clarke , Alberto Saiani , Andrew Irwin , Elena V. Bichenkova
{"title":"Hydrogel “Affinity Trap” for microRNAs with a Self-Assembling Fluorescent “Split-Probe” to Monitor Their Expression and Degradation","authors":"Sameen Yousaf , Bahareh Amirloo , Harmesh S. Aojula , David J. Clarke , Alberto Saiani , Andrew Irwin , Elena V. Bichenkova","doi":"10.1021/acs.biomac.5c00594","DOIUrl":null,"url":null,"abstract":"<div><div>The hydrogel “affinity trap” engineered here from peptides and nucleic acids into dynamic supramolecular structures offered the opportunity to measure physiological concentrations of tissue-specific microRNA expression and degradation, which are symptomatic for diseased cells and tissues. Hydrogel size-discriminating properties allowed to segregate microRNAs from complex biological media into a hydrogel matrix and entrap the target sequence via hybridization with a hydrogel-immobilized “capture” probe, where it could be detected through fluorescence quenching. We demonstrated the size-selective permeability of the hydrogel that provided a protective microenvironment for microRNAs and detection probes from cellular biological interference and afforded selective self-assembly and detection of oncogenic microRNA-21 (miR-21) in the presence of cell extracts, which is otherwise detrimental for detection in a gel-free solution. We were also able to monitor the degradation of unlabeled miR-21 by natural (RNase A and H) and synthetic (miR-21-RNase) ribonucleases and their synergistic actions, which could be potentially useful in the therapeutic knockdown of pathogenic RNAs.</div></div><div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (139KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 7","pages":"Pages 4595-4611"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S152577972500282X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The hydrogel “affinity trap” engineered here from peptides and nucleic acids into dynamic supramolecular structures offered the opportunity to measure physiological concentrations of tissue-specific microRNA expression and degradation, which are symptomatic for diseased cells and tissues. Hydrogel size-discriminating properties allowed to segregate microRNAs from complex biological media into a hydrogel matrix and entrap the target sequence via hybridization with a hydrogel-immobilized “capture” probe, where it could be detected through fluorescence quenching. We demonstrated the size-selective permeability of the hydrogel that provided a protective microenvironment for microRNAs and detection probes from cellular biological interference and afforded selective self-assembly and detection of oncogenic microRNA-21 (miR-21) in the presence of cell extracts, which is otherwise detrimental for detection in a gel-free solution. We were also able to monitor the degradation of unlabeled miR-21 by natural (RNase A and H) and synthetic (miR-21-RNase) ribonucleases and their synergistic actions, which could be potentially useful in the therapeutic knockdown of pathogenic RNAs.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.