Martin R. Kurek, Rafael Muniz, José M. S. Moura, Bernhard Peucker-Ehrenbrink, Robert M. Holmes, Amy M. McKenna, Robert G. M. Spencer
{"title":"Long-Term and Seasonal Drivers of Organic Matter in the Clearwater Tapajós River and Implications for the Amazon River Basin","authors":"Martin R. Kurek, Rafael Muniz, José M. S. Moura, Bernhard Peucker-Ehrenbrink, Robert M. Holmes, Amy M. McKenna, Robert G. M. Spencer","doi":"10.1029/2025GB008545","DOIUrl":null,"url":null,"abstract":"<p>The Amazon River exports over 10% of the global riverine dissolved organic carbon (DOC) flux to the ocean. However, several downstream clearwater tributaries, such as the Tapajós River, are typically not included in these measurements, omitting a crucial part of the Amazon carbon cycle. This study investigated near-monthly DOC and dissolved organic matter (DOM) composition via optical, fluorescence spectroscopy, and ultra-high resolution mass spectrometry (FT-ICR MS) of the Tapajós River for 8 years (2016–2024) to better understand patterns and drivers of potential organic carbon export to the lower Amazon River. DOM composition and DOC export were driven by the seasonal flood pulse of the Tapajós River, exporting aromatic terrestrial DOM from the watershed during high discharge and internally produced algal or microbial DOM during dry periods. On average, we report that the Tapajós River exports 1.38 Tg DOC annually to the downstream Amazon mixing zone, representing an amount of DOC exported by other major world rivers such as the Yukon or Mekong River. Furthermore, organic carbon export varied interannually with less DOC exported during dry El Niño events and more algal-derived DOM exported during bloom periods. Finally, as grassland and cropland landcover increased over the study period, we observed an average decrease in aromatic DOM and an increase in microbially processed fluorophores. Our study suggests that temperature, precipitation, and anthropogenic land use changes in clearwater rivers will impact carbon export across the lower Amazon River network.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"39 6","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025GB008545","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Amazon River exports over 10% of the global riverine dissolved organic carbon (DOC) flux to the ocean. However, several downstream clearwater tributaries, such as the Tapajós River, are typically not included in these measurements, omitting a crucial part of the Amazon carbon cycle. This study investigated near-monthly DOC and dissolved organic matter (DOM) composition via optical, fluorescence spectroscopy, and ultra-high resolution mass spectrometry (FT-ICR MS) of the Tapajós River for 8 years (2016–2024) to better understand patterns and drivers of potential organic carbon export to the lower Amazon River. DOM composition and DOC export were driven by the seasonal flood pulse of the Tapajós River, exporting aromatic terrestrial DOM from the watershed during high discharge and internally produced algal or microbial DOM during dry periods. On average, we report that the Tapajós River exports 1.38 Tg DOC annually to the downstream Amazon mixing zone, representing an amount of DOC exported by other major world rivers such as the Yukon or Mekong River. Furthermore, organic carbon export varied interannually with less DOC exported during dry El Niño events and more algal-derived DOM exported during bloom periods. Finally, as grassland and cropland landcover increased over the study period, we observed an average decrease in aromatic DOM and an increase in microbially processed fluorophores. Our study suggests that temperature, precipitation, and anthropogenic land use changes in clearwater rivers will impact carbon export across the lower Amazon River network.
期刊介绍:
Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.