David S. Tonoian, Xiao-Jia Zhang, Anton Artemyev, Qianli Ma, Robert W. Ebert, Frederic Allegrini
{"title":"Parametric Regimes of Thin Current Sheets in Planetary Magnetospheres and Solar Wind","authors":"David S. Tonoian, Xiao-Jia Zhang, Anton Artemyev, Qianli Ma, Robert W. Ebert, Frederic Allegrini","doi":"10.1029/2025JA033942","DOIUrl":null,"url":null,"abstract":"<p>Current sheets are quasi-1D layers of strong current density, which play a crucial role in storing magnetic field energy and subsequently releasing it through charged particle acceleration and plasma heating. They are observed in planetary magnetospheres and solar wind flows, where they are also known as solar wind discontinuities. Despite significant variations in plasma parameters across different magnetospheres and the solar wind, current sheet configurations can remain fundamentally similar. In this study, we analyze current sheets observed in various regions, including the near-Earth (within 30 Earth radii) and distant (50–200 Earth radii) magnetotail, Earth's dayside and nightside magnetosheath, the near-Earth solar wind, and Martian and Jovian magnetotails. We examine three key plasma parameters: the plasma beta (ratio of plasma to magnetic pressure), the Alfvénic Mach number (ratio of plasma bulk flow speed to Alfvén speed in the current sheet reference frame), and the ion to electron temperature ratio. Additionally, we investigate the kinetic, thermal, and magnetic field energy densities. Our cross-system analysis demonstrates that the same current sheet configuration can exist across a very wide parametric space spanning multiple orders of magnitude. We also highlight the distinct plasma environments of the Martian and Jovian magnetotails, characterized by large populations of heavy ions, emphasizing their significance in comparative magnetospheric studies.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 6","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025JA033942","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Current sheets are quasi-1D layers of strong current density, which play a crucial role in storing magnetic field energy and subsequently releasing it through charged particle acceleration and plasma heating. They are observed in planetary magnetospheres and solar wind flows, where they are also known as solar wind discontinuities. Despite significant variations in plasma parameters across different magnetospheres and the solar wind, current sheet configurations can remain fundamentally similar. In this study, we analyze current sheets observed in various regions, including the near-Earth (within 30 Earth radii) and distant (50–200 Earth radii) magnetotail, Earth's dayside and nightside magnetosheath, the near-Earth solar wind, and Martian and Jovian magnetotails. We examine three key plasma parameters: the plasma beta (ratio of plasma to magnetic pressure), the Alfvénic Mach number (ratio of plasma bulk flow speed to Alfvén speed in the current sheet reference frame), and the ion to electron temperature ratio. Additionally, we investigate the kinetic, thermal, and magnetic field energy densities. Our cross-system analysis demonstrates that the same current sheet configuration can exist across a very wide parametric space spanning multiple orders of magnitude. We also highlight the distinct plasma environments of the Martian and Jovian magnetotails, characterized by large populations of heavy ions, emphasizing their significance in comparative magnetospheric studies.