{"title":"Protective Effects of COG133 on Carbon Tetrachloride-Induced Acute Liver Injury: Modulation of Inflammation, Apoptosis and Sphingolipid Metabolism","authors":"Mutay Aslan, Bürke Çırçırlı, Aleyna Öztüzün, Hazal Tuzcu, Çağatay Yılmaz, Tuğçe Çeker, Gülsüm Özlem Elpek","doi":"10.1111/jcmm.70677","DOIUrl":null,"url":null,"abstract":"<p>Acute liver hepatotoxicity, characterised by inflammation, apoptosis and metabolic dysfunction, is often caused by drug-induced toxic events. This study evaluated the protective effects of COG133, a synthetic peptide derived from apolipoprotein E (ApoE), against carbon tetrachloride (CCl<sub>4</sub>)-induced liver damage, focusing on inflammation, apoptosis and sphingolipid metabolism. An acute hepatotoxicity model was established in rats utilising CCl<sub>4</sub>, with co-administration of COG133 at varying doses. Histological analyses, immunostaining, messenger RNA (mRNA)/protein quantification, flow cytometry and mass spectrometry were employed to assess necroinflammation, apoptosis and sphingolipid levels. Cell viability assays and morphological evaluations were conducted on rat hepatocytes and hepatic stellate cells (HSC-T6) to evaluate the protective effects of COG133. COG133 reduced liver damage, necroinflammation and apoptosis, restoring cell viability and lowering markers of inflammation, fibrosis and oxidative stress, including tumour necrosis factor-alpha (TNF-α), nuclear factor kappa-B (NF-κB), inducible nitric oxide synthase (NOS2), interleukin-1 beta (IL-1β), transforming growth factor-beta (TGF-β) and collagen type I (Col-1). Immunostaining and molecular analyses confirmed these effects. Sphingomyelin (SM) and sphingosine-1-phosphate (S1P) levels were partially restored, while ceramide (CER) levels remained reduced in COG133-treated groups. COG133 protects against CCl<sub>4</sub>-induced liver injury by reducing inflammation, apoptosis and morphological damage, with partial restoration of sphingolipid metabolism. These findings support its potential as a novel therapeutic agent for acute liver injury.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"29 12","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70677","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Acute liver hepatotoxicity, characterised by inflammation, apoptosis and metabolic dysfunction, is often caused by drug-induced toxic events. This study evaluated the protective effects of COG133, a synthetic peptide derived from apolipoprotein E (ApoE), against carbon tetrachloride (CCl4)-induced liver damage, focusing on inflammation, apoptosis and sphingolipid metabolism. An acute hepatotoxicity model was established in rats utilising CCl4, with co-administration of COG133 at varying doses. Histological analyses, immunostaining, messenger RNA (mRNA)/protein quantification, flow cytometry and mass spectrometry were employed to assess necroinflammation, apoptosis and sphingolipid levels. Cell viability assays and morphological evaluations were conducted on rat hepatocytes and hepatic stellate cells (HSC-T6) to evaluate the protective effects of COG133. COG133 reduced liver damage, necroinflammation and apoptosis, restoring cell viability and lowering markers of inflammation, fibrosis and oxidative stress, including tumour necrosis factor-alpha (TNF-α), nuclear factor kappa-B (NF-κB), inducible nitric oxide synthase (NOS2), interleukin-1 beta (IL-1β), transforming growth factor-beta (TGF-β) and collagen type I (Col-1). Immunostaining and molecular analyses confirmed these effects. Sphingomyelin (SM) and sphingosine-1-phosphate (S1P) levels were partially restored, while ceramide (CER) levels remained reduced in COG133-treated groups. COG133 protects against CCl4-induced liver injury by reducing inflammation, apoptosis and morphological damage, with partial restoration of sphingolipid metabolism. These findings support its potential as a novel therapeutic agent for acute liver injury.
期刊介绍:
The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries.
It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.