Paraventricular Nucleus of the Thalamus Neurons That Project to the Nucleus Accumbens Show Enhanced c-Fos Expression During Early-Stage Cue-Reward Associative Learning in Male Rats

IF 2.4 4区 医学 Q3 NEUROSCIENCES
S. Seeger-Armbruster, M. Wang, R. E. Campbell, B. I. Hyland
{"title":"Paraventricular Nucleus of the Thalamus Neurons That Project to the Nucleus Accumbens Show Enhanced c-Fos Expression During Early-Stage Cue-Reward Associative Learning in Male Rats","authors":"S. Seeger-Armbruster,&nbsp;M. Wang,&nbsp;R. E. Campbell,&nbsp;B. I. Hyland","doi":"10.1111/ejn.70168","DOIUrl":null,"url":null,"abstract":"<p>The paraventricular nucleus of the thalamus (PVT) is a central node in brain networks controlling motivated behaviors. It processes inputs from cerebral cortex, brainstem, and hypothalamus and has efferents that project to a wide range of structures, including the nucleus accumbens (nAcc). It is known that PVT neurons projecting to the nAcc show c-Fos activation in response to reward-related cues, in well-trained animals. We previously found that c-Fos expression is also increased early in the conditioning process, during the first session of learning a new cue-reward association in rats, but neurons with projections to nAcc were not identified in that study. Here, we tested the hypothesis that nAcc-projecting PVT neurons would show this enhanced c-Fos expression following first exposure to the association of a visual cue with a subsequent food reward. Male rats were stereotaxically injected in the nAcc with a retrogradely transported adeno-associated virus construct leading to green fluorescent protein (GFP) expression in cell bodies of afferents from PVT. Following a single session of cue-reward training, processing of the brains with dual immunohistochemistry for c-Fos and GFP showed significantly higher density of double labelled neurons in the conditioned group, compared to controls in which the same number of cues and rewards were delivered at random intervals with respect to each other. Such activation of immediate early gene expression in PVT to nAcc projecting neurons very early in paired associative reward learning may have a role in modulating plasticity in the nAcc.</p>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":"61 12","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejn.70168","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejn.70168","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The paraventricular nucleus of the thalamus (PVT) is a central node in brain networks controlling motivated behaviors. It processes inputs from cerebral cortex, brainstem, and hypothalamus and has efferents that project to a wide range of structures, including the nucleus accumbens (nAcc). It is known that PVT neurons projecting to the nAcc show c-Fos activation in response to reward-related cues, in well-trained animals. We previously found that c-Fos expression is also increased early in the conditioning process, during the first session of learning a new cue-reward association in rats, but neurons with projections to nAcc were not identified in that study. Here, we tested the hypothesis that nAcc-projecting PVT neurons would show this enhanced c-Fos expression following first exposure to the association of a visual cue with a subsequent food reward. Male rats were stereotaxically injected in the nAcc with a retrogradely transported adeno-associated virus construct leading to green fluorescent protein (GFP) expression in cell bodies of afferents from PVT. Following a single session of cue-reward training, processing of the brains with dual immunohistochemistry for c-Fos and GFP showed significantly higher density of double labelled neurons in the conditioned group, compared to controls in which the same number of cues and rewards were delivered at random intervals with respect to each other. Such activation of immediate early gene expression in PVT to nAcc projecting neurons very early in paired associative reward learning may have a role in modulating plasticity in the nAcc.

Abstract Image

雄性大鼠丘脑神经元室旁核向伏隔核投射的c-Fos表达在提示-奖励联想学习早期增强
丘脑室旁核(PVT)是控制动机行为的脑网络的中心节点。它处理来自大脑皮层、脑干和下丘脑的输入,并有投射到包括伏隔核(nAcc)在内的广泛结构的传出。众所周知,在训练有素的动物中,投射到nAcc的PVT神经元在响应奖励相关线索时显示c-Fos激活。我们之前发现,c-Fos的表达也在条件反射过程的早期增加,在大鼠学习新的线索-奖励关联的第一次会议期间,但在该研究中未发现有nAcc投射的神经元。在这里,我们验证了一个假设,即nacc投射的PVT神经元在第一次暴露于视觉线索与随后的食物奖励的关联后会表现出这种增强的c-Fos表达。将一种逆行转运的腺相关病毒结构体立体定向注射到雄性大鼠的nAcc中,导致ppt传入事件细胞体中绿色荧光蛋白(GFP)的表达。在单次提示奖励训练后,用c-Fos和GFP双重免疫组织化学处理的大脑显示,条件组的双标记神经元密度显著提高。与以随机间隔提供相同数量的提示和奖励的对照组相比。配对联想奖励学习中PVT对nAcc投射神经元的即时早期基因表达的激活可能在调节nAcc的可塑性中起作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Neuroscience
European Journal of Neuroscience 医学-神经科学
CiteScore
7.10
自引率
5.90%
发文量
305
审稿时长
3.5 months
期刊介绍: EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信