Alaa Hajr, Bahram Tarvirdizadeh, Khalil Alipour, Mohammad Ghamari
{"title":"Contactless Health Monitoring: An Overview of Video-Based Techniques Utilising Machine/Deep Learning","authors":"Alaa Hajr, Bahram Tarvirdizadeh, Khalil Alipour, Mohammad Ghamari","doi":"10.1049/wss2.70009","DOIUrl":null,"url":null,"abstract":"<p>Vital signs are crucial indicators of an individual's physiological well-being and represent one of the primary evaluations conducted in clinical and hospital environments. A comprehensive evaluation of a patient's health state depends on these signs which include heart rate (HR), respiratory rate (RR), blood oxygen saturation (SpO2), blood pressure (BP) and body temperature (BT). In recent years, there has been significant interest in using imaging photoplethysmography (iPPG) with consumer-level cameras for contactless health monitoring (CHM) to accurately assess vital signs. The introduction of iPPG in CHM signifies the beginning of a remarkable era in the history of healthcare, whereby diagnostic processes are enhanced via the integration of technology and patient well-being. This review article presents a comprehensive examination of CHM techniques utilising machine learning (ML) and deep learning (DL) algorithms for the assessment of critical vital signs. The article addresses the challenges and research gaps identified in recent studies, particularly those related to variations in lighting conditions, head movements and the impact of different colour types on the accuracy and reliability of CHM techniques. Finally, we propose several recommendations aimed to enhance the efficiency of CHM systems. These include the development of more robust learning algorithms and the creation of diverse datasets that encompass a wide range of demographics including variations in gender, skin colour and lighting conditions.</p>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":"15 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.70009","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/wss2.70009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Vital signs are crucial indicators of an individual's physiological well-being and represent one of the primary evaluations conducted in clinical and hospital environments. A comprehensive evaluation of a patient's health state depends on these signs which include heart rate (HR), respiratory rate (RR), blood oxygen saturation (SpO2), blood pressure (BP) and body temperature (BT). In recent years, there has been significant interest in using imaging photoplethysmography (iPPG) with consumer-level cameras for contactless health monitoring (CHM) to accurately assess vital signs. The introduction of iPPG in CHM signifies the beginning of a remarkable era in the history of healthcare, whereby diagnostic processes are enhanced via the integration of technology and patient well-being. This review article presents a comprehensive examination of CHM techniques utilising machine learning (ML) and deep learning (DL) algorithms for the assessment of critical vital signs. The article addresses the challenges and research gaps identified in recent studies, particularly those related to variations in lighting conditions, head movements and the impact of different colour types on the accuracy and reliability of CHM techniques. Finally, we propose several recommendations aimed to enhance the efficiency of CHM systems. These include the development of more robust learning algorithms and the creation of diverse datasets that encompass a wide range of demographics including variations in gender, skin colour and lighting conditions.
期刊介绍:
IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.