{"title":"Estimation of Gait Phase of Human Stair Descent Walking Based on Phase Variable Approach","authors":"Myeongju Cha;Pilwon Hur","doi":"10.1109/LRA.2025.3579634","DOIUrl":null,"url":null,"abstract":"Synchronization between a wearer and a lower limb powered prosthesis is important for effective control. Typically, phase variable-based phase estimation methods are employed. However, there is a noticeable lack of studies focusing on estimating the gait phase during stair descent, likely due to the difficulty in generating a reliable phase variable. In most studies, the thigh angle is used to generate phase variables for level walking because it follows a sinusoidal pattern. However, during stair descent, the thigh angle exhibits only a partially sinusoidal shape, making it challenging to apply the methods used for level walking. In this study, we propose a novel phase variable generation method to address the difficulty of using only the thigh angle for stair descent. To estimate the gait phase reliably, the phase variable is defined differently for the stance and swing phases: the hip position is used to generate the phase variable during the stance phase, and the thigh angle is used during the swing phase. These phase variables are then unified into a single phase variable (PV-ENT) for the entire gait cycle of stair descent. During this unification process, a non-smooth transition occurs around the phase transition point. To address this, a blending method is applied. The proposed method was validated using the data from 12 healthy subjects, collected through a motion capture system and IMU sensors. The results demonstrate a reliable phase estimation performance. Moreover, the blending method successfully improves the smoothness of the phase variable around the phase transition point without reducing the overall phase estimation performance.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 8","pages":"7691-7698"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11034712/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Synchronization between a wearer and a lower limb powered prosthesis is important for effective control. Typically, phase variable-based phase estimation methods are employed. However, there is a noticeable lack of studies focusing on estimating the gait phase during stair descent, likely due to the difficulty in generating a reliable phase variable. In most studies, the thigh angle is used to generate phase variables for level walking because it follows a sinusoidal pattern. However, during stair descent, the thigh angle exhibits only a partially sinusoidal shape, making it challenging to apply the methods used for level walking. In this study, we propose a novel phase variable generation method to address the difficulty of using only the thigh angle for stair descent. To estimate the gait phase reliably, the phase variable is defined differently for the stance and swing phases: the hip position is used to generate the phase variable during the stance phase, and the thigh angle is used during the swing phase. These phase variables are then unified into a single phase variable (PV-ENT) for the entire gait cycle of stair descent. During this unification process, a non-smooth transition occurs around the phase transition point. To address this, a blending method is applied. The proposed method was validated using the data from 12 healthy subjects, collected through a motion capture system and IMU sensors. The results demonstrate a reliable phase estimation performance. Moreover, the blending method successfully improves the smoothness of the phase variable around the phase transition point without reducing the overall phase estimation performance.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.