Approaches to Mitigate Edge Recombination Effects in Silicon Lifetime Samples With Emitter

IF 2.5 3区 工程技术 Q3 ENERGY & FUELS
David Bäurle;Axel Herguth;Giso Hahn
{"title":"Approaches to Mitigate Edge Recombination Effects in Silicon Lifetime Samples With Emitter","authors":"David Bäurle;Axel Herguth;Giso Hahn","doi":"10.1109/JPHOTOV.2025.3568471","DOIUrl":null,"url":null,"abstract":"Insufficiently sized symmetric lifetime samples with pn-junction exhibit a specific injection-dependent effective charge carrier lifetime measured by photoconductance decay due to increased edge recombination, characterized by a strong decline toward low injection. In this study, various approaches are presented to suppress these edge effects in n-type Si samples with boron emitter. These approaches include edge passivation using AlO<inline-formula><tex-math>$_{\\text{x}}$</tex-math></inline-formula> from atomic layer deposition and the creation of an undiffused buffer layer between the central measurement area and recombination-active edges. For the latter, both an etch-back approach and a masked diffusion of the boron emitter (sunken emitter) are evaluated. Lifetime measurements and photoluminescence imaging demonstrate that the sunken emitter approach most effectively suppresses edge recombination in small-sized lifetime samples.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 4","pages":"518-522"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11012743/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Insufficiently sized symmetric lifetime samples with pn-junction exhibit a specific injection-dependent effective charge carrier lifetime measured by photoconductance decay due to increased edge recombination, characterized by a strong decline toward low injection. In this study, various approaches are presented to suppress these edge effects in n-type Si samples with boron emitter. These approaches include edge passivation using AlO$_{\text{x}}$ from atomic layer deposition and the creation of an undiffused buffer layer between the central measurement area and recombination-active edges. For the latter, both an etch-back approach and a masked diffusion of the boron emitter (sunken emitter) are evaluated. Lifetime measurements and photoluminescence imaging demonstrate that the sunken emitter approach most effectively suppresses edge recombination in small-sized lifetime samples.
利用发射极缓解硅寿命样品边缘复合效应的方法
具有pn结的尺寸不足的对称寿命样品表现出特定的注入依赖于有效载流子寿命,由于边缘复合的增加,通过光电导衰减测量,其特征是向低注入方向强烈下降。在本研究中,提出了多种方法来抑制硼发射器的n型Si样品中的这些边缘效应。这些方法包括使用原子层沉积的AlO$_{\text{x}}$钝化边缘,以及在中心测量区域和重组活动边缘之间创建非扩散缓冲层。对于后者,两个蚀刻回方法和掩盖扩散硼发射极(下沉发射极)进行了评估。寿命测量和光致发光成像表明,在小尺寸寿命样品中,下陷发射器方法最有效地抑制了边缘重组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Photovoltaics
IEEE Journal of Photovoltaics ENERGY & FUELS-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.00
自引率
10.00%
发文量
206
期刊介绍: The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信