On Low-Power Error-Correcting Cooling Codes With Large Distances

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yuhao Zhao;Xiande Zhang
{"title":"On Low-Power Error-Correcting Cooling Codes With Large Distances","authors":"Yuhao Zhao;Xiande Zhang","doi":"10.1109/TIT.2025.3563973","DOIUrl":null,"url":null,"abstract":"A low-power error-correcting cooling (LPECC) code was introduced as a coding scheme for communication over a bus by Chee et al. to control the peak temperature, the average power consumption of on-chip buses, and error-correction for the transmitted information, simultaneously. Specifically, an <inline-formula> <tex-math>$(n, t, w, e)$ </tex-math></inline-formula>-LPECC code is a coding scheme over <italic>n</i> wires that avoids state transitions on the <italic>t</i> hottest wires and allows at most <italic>w</i> state transitions in each transmission, and can correct up to <italic>e</i>transmission errors. In this paper, we study the maximum possible size of an <inline-formula> <tex-math>$(n, t, w, e)$ </tex-math></inline-formula>-LPECC code, denoted by <inline-formula> <tex-math>$C(n,t,w,e)$ </tex-math></inline-formula>. When <inline-formula> <tex-math>$w=e+2$ </tex-math></inline-formula> is large, we establish a general upper bound <inline-formula> <tex-math>$C(n,t,w,w-2)\\leq \\lfloor \\binom {n+1}{2}/\\binom {w+t}{2}\\rfloor $ </tex-math></inline-formula>; when <inline-formula> <tex-math>$w=e+2=3$ </tex-math></inline-formula>, we prove <inline-formula> <tex-math>$C(n,t,3,1) \\leq \\lfloor \\frac {n(n+1)}{6(t+1)}\\rfloor $ </tex-math></inline-formula>. Both bounds are tight for large <italic>n</i> satisfying some divisibility conditions. Previously, tight bounds were known only for <inline-formula> <tex-math>$w=e+2=3,4$ </tex-math></inline-formula> and <inline-formula> <tex-math>$t\\leq 2$ </tex-math></inline-formula>. In general, when <inline-formula> <tex-math>$w=e+d$ </tex-math></inline-formula> is large for a constant <italic>d</i>, we determine the asymptotic value of <inline-formula> <tex-math>$C(n,t,w,w-d)\\sim \\binom {n}{d}/\\binom {w+t}{d}$ </tex-math></inline-formula> as <italic>n</i> goes to infinity, which can be extended to <italic>q</i>-ary codes.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 7","pages":"5215-5225"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10976479/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

A low-power error-correcting cooling (LPECC) code was introduced as a coding scheme for communication over a bus by Chee et al. to control the peak temperature, the average power consumption of on-chip buses, and error-correction for the transmitted information, simultaneously. Specifically, an $(n, t, w, e)$ -LPECC code is a coding scheme over n wires that avoids state transitions on the t hottest wires and allows at most w state transitions in each transmission, and can correct up to etransmission errors. In this paper, we study the maximum possible size of an $(n, t, w, e)$ -LPECC code, denoted by $C(n,t,w,e)$ . When $w=e+2$ is large, we establish a general upper bound $C(n,t,w,w-2)\leq \lfloor \binom {n+1}{2}/\binom {w+t}{2}\rfloor $ ; when $w=e+2=3$ , we prove $C(n,t,3,1) \leq \lfloor \frac {n(n+1)}{6(t+1)}\rfloor $ . Both bounds are tight for large n satisfying some divisibility conditions. Previously, tight bounds were known only for $w=e+2=3,4$ and $t\leq 2$ . In general, when $w=e+d$ is large for a constant d, we determine the asymptotic value of $C(n,t,w,w-d)\sim \binom {n}{d}/\binom {w+t}{d}$ as n goes to infinity, which can be extended to q-ary codes.
大距离低功耗纠错冷却码研究
Chee等人提出了一种低功耗纠错冷却码(LPECC)作为总线通信的编码方案,可以同时控制芯片上总线的峰值温度、平均功耗和传输信息的纠错。具体来说,$(n, t, w, e)$ -LPECC代码是一种基于n条线的编码方案,它避免了t条最热的线上的状态转换,并且在每次传输中最多允许w个状态转换,并且可以纠正多达10个传输错误。在本文中,我们研究了$(n, t, w, e)$ -LPECC代码的最大可能大小,用$C(n,t,w,e)$表示。当$w=e+2$较大时,建立一般上界$C(n,t,w,w-2)\leq \lfloor \binom {n+1}{2}/\binom {w+t}{2}\rfloor $;当$w=e+2=3$,我们证明$C(n,t,3,1) \leq \lfloor \frac {n(n+1)}{6(t+1)}\rfloor $。两个边界对于满足某些可整除条件的大n都是紧的。以前,只有$w=e+2=3,4$和$t\leq 2$才知道紧密边界。一般情况下,对于常数d,当$w=e+d$很大时,我们确定了$C(n,t,w,w-d)\sim \binom {n}{d}/\binom {w+t}{d}$在n趋于无穷时的渐近值,可以推广到q元码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信