Xinyi Liu , Yin Du , Xuhui Pei , Hanming Wang , Dongpeng Hua , Qing Zhou , Haifeng Wang
{"title":"Unlocking metallic glasses ultra-low friction via high-entropy effect and oxidation","authors":"Xinyi Liu , Yin Du , Xuhui Pei , Hanming Wang , Dongpeng Hua , Qing Zhou , Haifeng Wang","doi":"10.1016/j.ijmecsci.2025.110507","DOIUrl":null,"url":null,"abstract":"<div><div>Bulk metallic glasses (BMGs) hold immense potential as micro- and nano-scale engineering materials, yet their tribological performance remains limited by metastable structures and poor friction behavior. This study achieves superior nanotribological properties in a Ti<sub>20</sub>Zr<sub>20</sub>Cu<sub>20</sub>Hf<sub>20</sub>Be<sub>20</sub> high-entropy BMG (HE-BMG) by synergistically combining high-entropy design with controlled surface oxidation, overcoming limitations of conventional BMG treatments. Nano-scratch testing revealed a 40 % reduction in coefficient of friction (from 0.2 to 0.12) and a 44 % decrease in scratch depth (from 90 nm to 50 nm) for high entropy oxide amorphous surface, alongside a 90 % elastic recovery, far surpassing the as-cast counterpart. Complementary molecular dynamics simulations and nanoindentation uncovered the dual role of the high entropy oxide amorphous surface: its ionic bonding and elevated free volume suppress ploughing and adhesion, while boosting hardness and elastic modulus. This synergy arises from the HE-BMG’s uniform elemental distribution, which curbs oxygen diffusion and yields a uniquely thin yet robust oxide layer compared to traditional BMGs. These findings establish a credible framework for designing low-friction, wear-resistant BMGs, with broad implications for advanced engineering applications.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"301 ","pages":"Article 110507"},"PeriodicalIF":7.1000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740325005922","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bulk metallic glasses (BMGs) hold immense potential as micro- and nano-scale engineering materials, yet their tribological performance remains limited by metastable structures and poor friction behavior. This study achieves superior nanotribological properties in a Ti20Zr20Cu20Hf20Be20 high-entropy BMG (HE-BMG) by synergistically combining high-entropy design with controlled surface oxidation, overcoming limitations of conventional BMG treatments. Nano-scratch testing revealed a 40 % reduction in coefficient of friction (from 0.2 to 0.12) and a 44 % decrease in scratch depth (from 90 nm to 50 nm) for high entropy oxide amorphous surface, alongside a 90 % elastic recovery, far surpassing the as-cast counterpart. Complementary molecular dynamics simulations and nanoindentation uncovered the dual role of the high entropy oxide amorphous surface: its ionic bonding and elevated free volume suppress ploughing and adhesion, while boosting hardness and elastic modulus. This synergy arises from the HE-BMG’s uniform elemental distribution, which curbs oxygen diffusion and yields a uniquely thin yet robust oxide layer compared to traditional BMGs. These findings establish a credible framework for designing low-friction, wear-resistant BMGs, with broad implications for advanced engineering applications.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.